Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы химия.docx
Скачиваний:
3
Добавлен:
07.08.2019
Размер:
333.52 Кб
Скачать

Межмолекулярные окислительно-восстановительные реакции

Окислитель и восстановитель находятся в разных веществах; обмен электронами в этих реакциях происходит между различными атомами или молекулами.

+4 -1 +2 0

MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O

2Cl- - 2ē → Cl20 (восстановитель окисляется)

Mn+4 + 2ē → Mn+2 (окислитель восстанавливается)

Внутримолекулярные – реакции, в которых атомы окислителя и восстановителя, входят в состав молекулы одного и того же исходного вещества и являются атомами различных элементов или одного элемента, но с различной степенью окисления.

+5 -2 -1 0

2KClO3 = 2KCl + 3O2

Cl+5 + 6ē → Cl- │х 2 (окислитель восстанавливается)

2O-2 - 4ē → O20 │х 3 (восстановитель окисляется)

Самоокисления-самовосстановления (диспропорционирования) – реакции, в которых атомы окислителя и восстановителя входят в состав одного и того же исходного вещества, являются атомами одного и того же элемента и имеют одинаковую степень окисления.

+4 +6 -2

4K2SO3 = 3K2SO4 + K2S

S+4 -2ē → S+6 │x 3 (восстановитель окисляется)

S+4 + 6ē → S-2 │x 1 (окислитель восстанавливается)

19

Процесс окисления – процесс отдачи электронов

Процесс восстановления – процесс принятия электронов

Окислитель – принимает электроны, восстанавливается и понижает степень окисления

Восстановитель – отдаёт электроны, окисляется и повышает степень окисления

Окисли́тельно-восстанови́тельные реа́кции (ОВР) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

ОКИСЛИТЕЛЬ - вещество, способное отнимать электроны у другого вещества (восстановителя).

ВОССТАНОВИТЕЛЬ - вещество, способное отдавать электроны другому веществу (окислителю).

20

При погружении в раствор электролита или воды активного металла его поверхностные ионы, находящиеся в узлах кристаллической решетки, вступают в различные взаимодействия с компонентами электролита. В результате на границе металл – раствор возникает разность потенциалов, называемая электродным потенциалом.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Электродные потенциалы зависят от природы веществ, участвующих в электродном процессе, от соотношения между активностями этих веществ и температуры. Для разбавленных растворов, эта зависимость выражается уравнением Нернста в следующей форме:

где стандартный электродный потенциал данного процесса,

R = 8,31 Дж/(мольК) - универсальная газовая постоянная,

T - абсолютная температура раствора,

n - число молей электронов передаваемых в процессе,

F = 96500 Кл/моль - постоянная Фарадея.

21

Ряд напряжений (реже — ряд активностей), последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод.

В Ряд напряжений часто включают неметаллы, ионы и некоторые химические соединения. Наиболее распространённые металлы расположены в Ряд напряжений в следующей последовательности: Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au.

Важнейшие следствия, вытекающие из Ряд напряжений и широко используемые в химической практике: 1) каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие в Ряд напряжений правее данного металла; 2) все металлы, расположенные в Ряд напряжений левее водорода, способны вытеснять его из кислот; 3) чем дальше расположены друг от друга два металла в Ряд напряжений, тем большее напряжение может давать построенный из них гальванический элемент. Ряд напряжений составляется на основе термодинамических характеристик электрохимических процессов, поэтому он позволяет судить лишь о принципиальной возможности этих процессов; реальное же их осуществление во многом определяется кинетическими факторами.

22

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ – источник электрического тока, в котором вследствие электрохимической реакции выделяется электрическая энергия. Состоит из отрицательных (чаще из цинка) и положительных (из меди, угля или окиси металла) электродов, погруженных в жидкий или пастообразный раствор электролита.

Между электродом и электролитом всегда возникает некоторая разность потенциалов, зависящая от электрода и состава электролита. Появление электродного потенциала объясняется тем, что вещество электрода под воздействием химической энергии растворяется в электролите и положительные ионы переходят в электролит.

Элемент Вольта состоит из погруженного в водный раствор отрицательного заряда – катода и положительного – анода.

В электрохимии процессы окисления носят название анодных процессов, а электрод, на котором протекает окисление называется анод; соответственно, процессы восстановления называются катодными процессами, а электрод, на котором проходит восстановление носит название катод.

Электродным потенциалом называется величина, равная ЭДС гальванического элемента, составленного из данного электрода и стандартного водородного электрода.

ЭДС электрохимического элемента равна разности электродных потенциалов: Е = φ1 - φ2

Электродный потенциал электрода считается положительным, если в гальваническом элементе со стандартным водородным электродом данный электрод является катодом, и отрицательным - если анодом.

23

Электродвижущая сила гальванического элемента - это максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции данного элемента. Единицей измерения ЭДС служит вольт.

ЭДС элемента вычисляется вычитанием из потенциала катода потенциала анода.