Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
103689 .rtf
Скачиваний:
34
Добавлен:
02.08.2019
Размер:
406.07 Кб
Скачать

7. Шум, ультразвук, инфразвук

Шум как гигиенический фактор это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер. Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда. По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека). Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам. вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.) Шум как физическое явление - это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. С физиологической точки зрения шум определяется как ощущение, которое воспринимается органами слуха во время действия на них звуковых волн в диапазоне частот 1620 000 Гц.

Звук, который распространяется в воздушной среде, называется воздушным звуком, в твердых телах структурным. Часть воздуха, охваченная колебательным процессом, называется звуковым полем. Свободным называется звуковое поле, в котором звуковые волны распространяются свободно, без препятствий (открытое .пространство, акустические условия в специальной заглушенной камере, облицованной звукопоглощающим материалом).Диффузным называется звуковое поле, в котором звуковые волны поступают в каждую точку пространства с одинаковой вероятностью со всех сторон (встречается в помещениях, внутренние поверхности которых имеют высокие коэффициенты отражения звука).В реальных условиях (помещение или территория предприятия; структура звукового поля может быть качественно близкой (или промежуточной) к предельным значениям свободного или диффузного звукового поля. Воздушный звук распространяется в виде продольных волн, то есть волн, в которых колебания частичек воздуха совпадают с направлением движения звуковой волны. Наиболее распространена форма продольных звуковых колебаний сферическая волна. Ее излучает равномерно во все стороны источник звука, размеры которого малы по сравнению с длиной волны. Структурный звук распространяется в виде продольных и поперечных волн. Поперечные волны отличаются от продольных тем, что колебания в них происходят в направлении, перпендикулярном направлению распространения волны. Болевой порог это максимальное звуковое давление, которое воспринимается ухом как звук. Давление свыше болевого порога может вызывать повреждение органов слуха. При частоте 1000 Гц в качестве болевого порога принято звуковое давление Р = 20 Н/м2. Для более полной характеристики источников шума введено понятие звуковой энергии, которая излучается источниками шума в окружающую среду за единицу времени. Величина потока звуковой энергии, которая проходит в течение 1 с через площадь 1 м2 перпендикулярно к направлению распространения звуковой волны, является мерой интенсивности звука или силы звука. Силой звука характеризуется громкость. Чем больше поток энергии, который излучается источником звука, тем выше громкость. Шумовые характеристики источников шума определяются в соответствии с ГОСТ 12.1.003-86. ССБТ «Шум, общие требования безопасности».

Шум определяют как совокупность апериодических звуков различной интенсивности и частоты. Окружающие человека шумы имеют разную интенсивность: разговорная речь — 50...60 дБ А, автосирена — 100 дБ А, шум двигателя легкового автомобиля —80 дБ А, громкая музыка — 70 дБ А, шум от движения трамвая — 70...80 дБ А, шум в обычной квартире —30...40 дБ А.

По спектральному составу в зависимости от преобладания звуковой энергии в соответствующем диапазоне часто различают низко, средне, и высокочастотные шумы, по временным характеристикам — постоянные и непостоянные, последние, в свою очередь, делятся на колеблющиеся, прерывистые и импульсные, по длительности действия — продолжительные и кратковременные. С гигиенических позиций придается большое значение амплитудно-временным, спектральным и вероятностным параметрам непостоянных шумов, наиболее характерных для современного производства.

Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, исключительно сильное влияние оказывает шум на быстроту реакции, сбор информации и аналитические процессы, из-за шума снижается производительность труда и ухудшается качество работы. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчиков, мостовых кранов и т. п.), что способствует возникновению несчастных случаев на производстве.

В биологическом отношении шум является заметным стрессовым фактором, способным вызвать срыв приспособительных реакций. Акустический стресс может приводить к разным проявлениям: от функциональных нарушений регуляции ЦНС до морфологически обозначенных дегенеративных деструктивных процессов в разных органах и тканях. Степень шумовой патологии зависит от интенсивности и продолжительности воздействия, функционального состояния ЦН' и, что очень важно, от индивидуальной чувствительности организма акустическому раздражителю. Индивидуальная чувствительность к шуму составляет 4...17 % . Считают, что повышенная чувствительность шуму определяется сенсибилизированной вегетативной реактивностью, присущей 11 % населения. Женский и детский организм особенно чувствительны к шуму. Высокая индивидуальная чувствительна может быть одной из причин повышенной утомляемости и развитии различных неврозов.

Шум с уровнем звукового давления до 30...35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40...70 дБ в условиях среды обитания создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия и при длительном действии может быть причиной неврозов. Воздействие шума уровнем свыше 75 дБ может привести к потере слуха — профессиональной тугоухости. При действии шума высоких уровней (более 140 дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (более 160 дБ) и смерть.

Специфическое шумовое воздействие, сопровождающееся повреждением слухового анализатора, проявляется медленно прогрессирующим снижением слуха. У некоторых лиц серьезное шумовое повреждение слуха может наступить в первые месяцы воздействия, у других — потеря слуха развивается постепенно, в течение всего пери-ода работы на производстве. Снижение слуха на 10 дБ практически неощутимо, на 20 дБ —начинает серьезно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.

Оценка состояния слуховой функции базируется на количественном определении потерь слуха и производится по показателям аудиометрического исследования. Основным методом исследования слуха является тональная аудиометрия. При оценке слуховой функции определяющими приняты средние показатели порогов слуха в области восприятия речевых частот (500, 1000, 2000 Гц), а также потеря слухового восприятия в области 4000 Гц.

Критерием профессионального снижения слуха принят показатель средней арифметической величины снижения слуха в речевом диапазоне, равный 11 дБ и более. Помимо патологии органа слуха при "воздействии шума наблюдаются отклонения в состоянии вестибулярной функции, а также общие неспецифические изменения в организме; рабочие жалуются на головные боли, головокружение, боли в области сердца, повышение артериального давления, боли в области желудка и желчного пузыря, изменение кислотности желудочного сока. Шум вызывает снижение функции защитных систем и общей устойчивости организма к внешним воздействиям.

Нормируемые параметры шума на рабочих местах определены ГОСТ 1.М.ООЗ—83* и Санитарными нормами СН 2.2.4/2.1.8.562—96 «Шум ",| рабочих местах, в помещениях жилых, общественных зданий и на

территории жилой застройки». Документы дают классификацию шумов но спектру на широкополосные и тональные, а по временным характеристикам — на постоянные и непостоянные. Для нормирования

постоянных шумов применяют допустимые уровни звукового давления (УЗД) в девяти октавных полосах частот в зависимости от вида производственной деятельности. Для ориентировочной оценки в качестве характеристики постоянного широкополосного шума на рабочих местах допускается принимать уровень звука (дБ А), определяемый по шкале А шумомера с коррекцией низкочастотной составляющей по закону чувствительности органов слуха и приближением результатов объективных измерений к субъективному восприятию.

Непостоянные шумы делятся на колеблющиеся во времени, прерывистые и импульсные. Нормируемой характеристикой непостоянного шума является эквивалентный по энергии уровень звука (дБ А).

Для тонального и импульсного шума допустимый уровень звука должен быть на 5 дБ меньше значений, указанных в табл. Эквивалентный по энергии уровень звука

При оценке шума допускается использовать дозу шума, так как установлена линейная зависимость доза — эффект по временному смещению порога слуха, что свидетельствует об адекватности оценки шума по энергии. Дозный подход позволяет также оценить кумуляцию шумового воздействия за рабочую смену.

Нормирование допустимого шума в жилых помещениях, общественных зданиях и на территории жилой застройки осуществляется в соответствии с СН 2.2.4/2.1.8.562—96.

Оценивать и прогнозировать потери слуха, связанные с действием производственного шума, дает возможность стандарт ИСО 1999: (1975) «Акустика—определение профессиональной экспозиции шума и оценка нарушений слуха, вызванных шумом».

В производственных условиях нередко возникает опасность комбинированного влияния высокочастотного шума и низкочастотного ультразвука, например при работе реактивной техники, при плазменных технологиях.

Ультразвук как упругие волны не отличается от слышимого звука, однако, частота колебательного процесса способствует большему затуханию колебаний вследствие трансформации энергии в теплоту.

По частотному спектру ультразвук классифицируют на: низкочастотный — колебания 1,12-Ю4...1,0-10* Гц; высокочастотный — 1,0-10*... 1,0-10 Гц; по способу распространения—на воздушный контактный ультразвук.

Допустимые уровни звукового давления, уровни звука и эквивалентного уровня звука на рабочих местах в производственных помещениях и на территории предприятий по ГОСТ 12.1.003-83 с дополнениями 1989г.

Таблица

Рабочие места

Уровни звукового давления, дБ, в активных полосах со среднегеометрическими частотами, Гц

Уровни звука и эквивалентные уровни звука, дБ А

31,5

63

125

250

500

1000

2000

4000

8000

Помещения конструкторских бюро, расчетчиков, программистов вычислительных машин, лабораторий для теоретических работ

86

71

61

54

49

45

42

40

38

50

Помещения управления, рабочие комнаты

93

79

70

68

58

55

52

50

49

60

Кабины наблюдений и дистанционного управления:

- без речевой связи по телефону

103

94

87

82

78

75

73

71

70

80

- с речевой связью по телефону

%

83

74

68

63

60

57

55

54

65

Помещения и участки точной сборки, машинописные бюро

96

83

74

68

63

60

57

55

54

65

Помещения лабораторий для проведения экспериментальных работ, для размещения шумных агрегатов, вычислительных машин

107

94

87

82

78

75

73

71

70

80

Постоянные рабочие места и рабочие зоны в производственных повешениях и на территории предприятий

110

99

92

86

83

80

78

76

74

85

Низкочастотные ультразвуковые колебания хорошо распространяются в воздухе. Биологический эффект воздействия их на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, подвергаемой действию ультразвука. Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга (чувство страха в темноте, в ограниченном пространстве, резкие приступы с учащением пульса, чрезмерной потливостью, спазмы в желудке, кишечнике, желчном пузыре). Наиболее характерны вегетососудистая дистония с жалобами на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.

Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Инфрозвук. Инфразвук это колебание в воздухе, в жидкой или твердой средах с частотой меньше 16 Гц. Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей. Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвуки, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров двигателей внутреннего сгорания, дизельных двигателей. Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ., а для полос с частотой 32 Гц не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:- увеличение частот вращения валов до 20 и больше оборотов в секунду;- повышение жесткости колеблющихся конструкций больших размеров; - устранение низкочастотных вибраций: - внесение конструктивных изменений в строение источников, что позволяет перейти т области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.

Список использованной литературы

1.Безопасность жизнедеятельности. Учебник для вузов С.В. белов, А.В. Ильницкая, А.Ф. Козьяков и др.; Под общей редакцией Белова С.В. 2-е изд., испр. И доп., М.; Высш. Шк., 1999г.

2. Безопасность жизнедеятельности: учеб. Метод. Пособие для студентов всех специальностей. Под редакцией Л.В. Колпаковой; Поволж. Кооп. Ин-т Центросоюза РФ. Энгельс: Регион инф.-изд. Центр ПКИ, 2003г.

3.Основы безопасности жизнедеятельности. 10 кл.: Учебник для общеобразоват. Учеб. Заведений. В.Н. Латчук, В.В. Марков, С.К. Миронов, С.Н.Вангородский. 2-е изд., стереотип. М: Дрофа, 201г.

4. Журнал «ОБЖ Основы Безопасности жизнедеятельности» №128 от 8. 2005

5. Л.Н. Боголюбов «Введение в обществознание» М. 1997

6. Н.И. Сиреева «Обеспечение безопасности жизнедеятельности», Йошкар-Ола 1996.

7. Денисенко Г.Ф. Охрана труда: Учебное пособие М.: Высшая школа, 1985.

8.Жидецкий В.Ц. ДжигирейВ.С., Мельников А.В. Основы охраны труда. Учебник

Размещено на Allbest.ru

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]