Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОТОВЫЕ ШПОРЫ МАТЕМАТИКА.rtf
Скачиваний:
1
Добавлен:
30.07.2019
Размер:
1.91 Mб
Скачать

Вопрос 1

Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если

f(x2) > f(x1) при x2 > x1.

Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если

f(x2) < f(x1) при x2 > x1.

Билет №9

Вопрос 1

Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Билет №10

Вопрос 1

Функция f ( x ) называется выпуклой на интервале ( a, b ), если её график на этом интервале лежит ниже касательной, проведенной к кривой y = f ( x ) в любой точке ( x0 , f ( x0 ) ), x0 ( a, b ).

Функция f ( x ) называется вогнутой на интервале ( a, b ), если её график на этом интервале лежит выше касательной, проведенной к кривой y = f ( x ) в любой точке ( x0 , f ( x0 ) ), x0 ( a, b ).

Достаточное условие вогнутости ( выпуклости ) функции.

Пусть функция f ( x ) дважды дифференцируема ( имеет вторую производную ) на интервале ( a, b ), тогда:

если f '' ( x ) > 0 для любого x ( a, b ), то функция f ( x ) является вогнутой на интервале ( a, b );

если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ) .

Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, что если в точке перегиба x0 существует вторая производная f '' ( x0 ), то f '' ( x0 ) = 0.

Билет №11

Вопрос 1

При решении этой задачи находят:

1) область определения функции;

2) точки разрыва и исследуют поведение функции в граничных точках области определения;

3) находят нули функции и промежутки ее знакопостоянства;

4) находят асимптоты;

5) критические точки и интервалы монотонности;

6) точки перегиба и интервалы выпуклости.

Замечание. Если функция f(x) четная, т.е. f(x) = f(–x), или нечетная, т.е. f(x) = – f(–x), то исследование функции достаточно провести для x³0, а затем по свойству четности или нечетности построить график при x<0.

Завершают исследование функции построением ее графика.

Билет №12

Вопрос 1

Первообразная. Непрерывная функция  F ( x ) называется  первообразной для функции  f ( x ) на промежутке  X ,  если для каждого   

 

F’ ( x ) = f ( x ).

Неопределённый интеграл функции  f ( x ) на промежутке  X есть множество всех её первообразных. Это записывается в виде:

где  C  – любая постоянная, называемая постоянной интегрирования

Билет №13