Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
практикум по биохимии (белки).rtf
Скачиваний:
8
Добавлен:
10.07.2019
Размер:
576.21 Кб
Скачать

1. Цель работы

Определить общий белок в сыворотке крови

2. Задание

2.1. Количественное определение общего белка в сыворотке крови биуретовым методом

3. Теоретическая часть

Содержание общего белка в сыворотке (плазме) крови можно характеризовать понятиями нормо-, гипо- и гиперпротеинемия, под которыми подразумеваются состояния, сопровождающиеся нормальной (не выходящей за пределы физиологических колебаний), пониженной или повышенной его концентрацией. Нормальное содержание общего белка в сыворотке крови составляет: у взрослых - 65-85 г/л, у новорожденных - 46-60 г/л, у детей до 2 лет – 51-75 г/л, старше 2 лет - 60-85 г/л.

Изменения уровня общего белка могут быть как абсолютными, так и относительными. Последние обычно отмечаются при увеличении (уменьшении) объема крови. Так, гидремия («водное» отравление), обильные вливания раствора глюкозы и других физиологических жидкостей, анурия, гиперсекреция антидиуретического гормона и альдостерона, которые способствуют задержке воды в организме, приводят к развитию относительной гипопротеинемии; при дегидратации (обезвоживании) вследствие потери жидкости при неукротимой рвоте, профузных поносах, холере, несахарном диабете, усиленном потоотделении (лихорадке), полиурии обнаруживается относительная гиперпротеинемия.

При подавляющем большинстве заболеваний внутренних органов, сопровождающихся сдвигами в белковом обмене, обнаруживается гипопротеинемия, носящая обычно вторичный, приобретенный характер (первичная гипопротеинемия встречается сравнительно редко, является генетически детерминированной и возникает вследствие дефектов генов, кодирующих определенные белки сыворотки, например – анальбуминения, агаммаглобулинемия и др.).

Абсолютная гипопротеинемия выявляется при патологических состояниях, при которых наблюдается снижение биосинтеза, усиление катаболизма или увеличение потерь белка. Наиболее частыми причинами ее являются:

  1. Недостаточное поступление белка с пищей, наблюдаемое обычно при недоедании, голодании, опухолях, сужении пищевода, нарушении функции желудочно-кишечного тракта (вследствие ухудшения переваривания и всасывания белковых компонентов пищевых продуктов), при продолжительных воспалительных процессах в кишечнике. По мнению А.А. Покровского, даже несбалансированный аминокислотный состав пищи может иногда приводить к гипопротеинемии.

  2. Подавление протеосинтетической функции печени, наблюдаемое при паренхиматозных гепатитах, а также интоксикациях, обусловленных длительными нагноительными процессами, злокачественными новообразованиями, действием некоторых химических ядов. Пораженные печеночные клетки, являющиеся местом образования альбуминов, фибриногена и части глобулинов, не в состоянии синтезировать белки плазмы крови в достаточном количестве, вследствие чего развивается гипопротеинемия, обусловленная в основном гипоальбуминемией и гипофибриногенемией.

  3. Повышение распада белка в организме, вызванные потребностью в возмещении больших энергетических затрат, связанных с дефицитом пластических ресурсов (ожоговая болезнь, злокачественные новообразования, гипертиреоидизм, гиперкортицизм и т.д.).

  4. Потеря белка организмом с кровью при острых и хронических кровотечениях, с мочой при нефротическом синдроме, через поврежденную слизистую кишечника (энтеропатии) и кожу (псориаз, обширные ожоги и др.).

Пониженное содержание белка в плазме крови отмечается и при некоторых физиологических состояниях, например, у женщин в последние месяцы беременности и в период лактации.

Следует отметить, что для обеспечения нормальных процессов жизнедеятельности организм при гипопротеинемии утилизирует прежде всего альбуминовую фракцию белков плазмы крови. При усиленном расходовании альбуминов, обусловливающих в основном онкотическое давление крови, развиваются отеки, которые отмечаются при патологических состояниях, сопровождающихся уменьшением содержания белка в плазме крови ниже 50 г/л. Также хорошо известно, что половина кальция плазмы крови связана с альбумином. Поэтому гипоальбуминемия почти всегда сопровождается гипокальциемией. При этом происходит уменьшение только связанной с белком (физиологически неактивной) фракции кальция, что не приводит к развитию тетании и судорог. Одной из важных функций альбумина является связывание и транспортировка билирубина, свободных жирных кислот и многих лекарственных препаратов (например салицилатов, пенициллина и сульфаниламидов). Связанные с альбумином лекарственные вещества физиологически и фармакологически не активны. Значительное уменьшение альбумина плазмы, приводя к снижению связывающей способности, может повысить уровень свободных фракций указанных выше веществ, результатом чего могут быть токсические эффекты при обычных дозировках лекарственных препаратов.

Абсолютная гиперпротеинемия - явление сравнительно редкое. Обычно она вызывается усилением биосинтеза глобулинов в клеточных элементах системы фагоцитирующих мононуклеаров (вследствие их инфекционного или токсического раздражения) при длительно текущих хронических воспалительных процессах. Это наблюдается, в частности, при хроническом полиартрите, циррозах печени и некоторых хронических процессах.

Значительная и стойкая гиперпротеинемия - до 120 г/л и выше фиксируется при миеломной болезни (плазмоцитоме), макроглобулинемии Вальденштрема, в результате которых в плоских костях черепа появляются дополнительные очаги образования "ненормальных" или патологических белков - парапротеинов. Поэтому, если у больного обнаружено высокое содержание общего белка в плазме крови, его нужно дополнительно обследовать на выявление этих форм аномальных белков.

Обнаружение аномальных белков в сыворотке крови (парапротеинемия) чаще всего наблюдается при патологических состояниях, в основе генеза которых лежат злокачественные новообразования: миеломатоз, на долю которого приходится большинство случаев злокачественных парапротеинемий; В-клеточные лимфомы, в том числе хронические лимфолейкозы; заболевания, связанные с аномалиями тяжелых цепей иммуноглобулинов, к которым относят редко встречающуюся группу заболеваний, характеризующихся накоплением в плазме крови или моче аномального белка, идентифицируемого с фрагментом Н-цепи. К группе парапротеинемий относится и криоглобулинемия, при которой в плазме крови больных выявляется присутствие криоглобулинов, к которым относят белки, выпадающие в осадок при охлаждении проб плазмы крови ниже температуры тела человека. Иногда, особенно если концентрация белка высока, внутрисосудистая преципитация может вызвать такие поражения кожи, как пурпура или феномен Рейно.

Из сказанного выше следует, что гипопротеинемия почти всегда связана с гипоальбуминемией, а гиперпротеинемия - с гиперглобулинемией.

При многих заболеваниях часто изменяется процентное соотношение отдельных белковых фракций, хотя общее количество белка в сыворотке крови остается в пределах нормы. Такое состояние носит название диспротеинемии. Так например, благодаря относительно небольшой молекулярной массе, потери значительных количеств альбумина происходят при условиях, для которых характерно повышение проницаемости биологических мембран, отделяющих плазму крови от межклеточной жидкости. Поэтому при воспалительной реакции организма на повреждение, вследствие увеличения проницаемости сосудистой стенки, происходит «выпотевание» альбуминов в интерстициальную жидкость, что приводит к снижению его концентрации в плазме крови - гипоальбуминемии. Однако при этом в плазме крови резко возрастает доля глобулиновых фракций (прежде всего a-глобулинов, которые включают в свой состав белки-реактанты острой фазы, или g-глобулинов), что как правило не приводит к изменению концентрации общего белка сыворотки. В то же время отмечается резкое изменение соотношения различных белковых фракций плазмы крови.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Количественное определение общего белка в сыворотке крови биуретовым методом

Известные в настоящее время методы количественного определения белков сыворотки крови можно подразделить на колориметрические, основывающиеся на цветных реакциях белков с определенными реактивами; спектрофотометрические, заключающиеся в измерении степени светопоглощения в ультрафиолетовой области и другие. Из колориметрических методов особого внимания заслуживают методы, основанные на биуретовой реакции. Они являются весьма точными, практически доступными и основаны на способности белков реагировать в щелочной среде с сернокислой медью, образуя комплексные соединения фиолетового цвета. При этом различия в интенсивности окрашивания комплексов, образованных альбуминами и глобулинами незначительно, что позволяет использовать данный метод для выявления уровня практически всех белков сыворотки крови.

Ход работы

К 5 мл рабочего раствора биуретового реактива добавляют 0,1 мл сыворотки крови. Через 30 минут пробу колориметрируют на ФЭКе в кювете с толщиной слоя 10 мм при зеленом светофильтре (длина волны 546 нм ) против контроля, который готовят путем прибавления к 5 мл рабочего раствора биуретового реактива 0,1 мл 0,9% NaCI. Расчет ведут по калибровочной кривой.

Построение калибровочной кривой. Из 10% стандартного раствора белка в 0,9% растворе NaCI готовят рабочие стандартные растворы так, как указано в таблице 10 (0,1 мл основного стандартного раствора содержит 0,01 г белка). Из каждого разведения берут по 0,1 мл рабочего раствора и вносят в пробирки, содержащие 5 мл биуретового реактива. Через 30-60 минут измеряют экстинкцию стандартных проб на ФЭКе против контроля.

Средние значения оптической плотности, соответствующие различным концентрациям, наносят на миллиметровую бумагу. На оси абсцисс откладывают значения концентрации стандартных растворов белка, на оси ординат - соответствующие им величины оптической плотности. Через полученные точки проводят прямую линию.

Данные для построения калибровочного графика для количественного определения концентрации общего белка в сыворотке крови представлены в таблице 4.

Данные для построения калибровочного графика Таблица 4

пробирки

Стандартный раствор белка, мл

0,9% NaCl, мл

Содержание белка в пробе, г

Концентрация, г%

1

0,4

0,6

0,04

4

2

0,6

0,4

0,06

6

3

0,8

0,2

0,08

8

4

1,0

-

0,10

10

5. СОДЕРЖАНИЕ ОТЧЕТА

Отчет составляется с указанием цели, задания, включая экспериментальные данные, таблицы и выводы.

РАЗДЕЛЕНИЕ БЕЛКОВЫХ АМИНОКИСЛОТ МЕТОДОМ РАСПРЕДЕЛИТЕЛЬНОЙ ХРОМАТОГРАФИИ НА БУМАГЕ

1. ЦЕЛЬ РАБОТЫ

Изучить хроматографический метод разделения и определения белковых аминокислот.

2. ЗАДАНИЕ

2.1. Подготовить носитель.

2.2. Провести хроматографию на бумаге отдельных аминокислот.

2.3. «Проявить» хроматограмму.

2.4. Определить коэффициенты распределения аминокислот.

2.5. Провести разделение и определение аминокислот в исследуемом растворе.

2.6. Сделать выводы и оформить отчет.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Для быстрого разделения белковых аминокислот широко используют метод круговой хроматографии на бумаге. Хроматография на бумаге является одной из разновидностей распределительной хроматографии. Распределительная хроматография основана на различной растворимости разделяемых веществ в двух (или нескольких) малосмешивающихся (или несмешивающихся) жидкостях. Одна из жидкостей должна быть полярной, а другая – неполярной.

Аминокислоты обладают различной растворимостью. Более гидрофобные лучше растворяются в неполярных растворителях (подвижная фаза), а гидрофильные – в полярных (неподвижная фаза). В качестве носителя неподвижного растворителя применяют чистую целлюлозу в виде специальной фильтровальной бумаги. Хроматографическая бумага должна обладать высокой чистотой и равномерной плотностью. Неподвижной фазой в бумажной хроматографии в большинстве случаев является вода, всегда присутствующая в фильтровальной бумаге. В качестве подвижной фазы выступают различные органические вещества или их смеси, предварительно насыщенные водой.

Т ехника бумажной хроматографии состоит в следующем. На хроматографическую бумагу на место старта наносится капля исследуемой смеси. Бумага высушивается при комнатной температуре и помещается в закрытый сосуд (хроматографическую камеру), в котором она непрерывно смачивается растворителем. Растворитель при этом равномерно распределяется по бумаге в определенном направлении. Вещества, входящие в состав смеси, вместе с ним перемещаются по бумаге в том же направлении, но с различной скоростью, и поэтому концентрируются на разном расстоянии от места старта. Чем меньше растворимость аминокислоты в воде и чем больше ее растворимость в феноле или другом органическом растворителе, тем быстрее она будет двигаться вместе с ним и тем дальше будет концентрироваться от места старта. Наоборот, чем больше растворимость аминокислоты в воде и чем меньше ее растворимость в органическом растворителе, тем медленнее она будет двигаться вместе с ним, концентрируясь вблизи от места старта.

Если разделяемые вещества не окрашены, хроматограмму «проявляют», т. е. проводят качественные реакции или обнаруживают их другими методами. Идентификация каждого компонента по окрашенному пятну производится на основании расчета величины коэффициента распределения (Rf). Коэффициент распределения вещества равен отношению расстояния Х (в мм), пройденного веществом от места его нанесения (места старта) до фронта пятна, к расстоянию Y (в мм), пройденному растворителем от места старта до фронта растворителя:

Rf = Х/Y

где Х – расстояние, пройденное веществом от места старта до фронта пятна, мм;

Y – расстояние, пройденное растворителем от места старта до фронта растворителя, мм.

Коэффициент распределения для каждого соединения индивидуален. Он зависит от многих факторов: температуры, состава растворителя, качества бумаги и т. д. Поэтому Rf является постоянной величиной только при данных конкретных условиях. Зная значение Rf отдельных веществ, можно определить состав смеси, идентифицировав входящие в нее вещества. Для этого надо провести хроматографическое разделение смеси в условиях, аналогичных тем, при которых определялись коэффициенты распределения веществ, входящих в ее состав.

Радиальную хроматографию на бумаге проводят в чашках Петри. В этом случае растворитель перемещается от центра круга к периферии, перенося с собой аминокислоты, которые концентрируются на различном расстоянии от центра, образуя круги. Их можно обнаружить, проведя нингидриновую реакцию. Хроматография широко применяется для разделения малых количеств веществ, которые близки по своему составу и свойствам, в частности для определения аминокислотного состава белка и различных биологических жидкостей.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Подготовка носителя

Для проведения круговой хроматографии на бумаге носитель готовят из хроматографической бумаги. Для этого вырезают из нее квадрат, сторона которого на 5–10 мм больше диаметра чашки Петри. Затем делают два параллельных разреза приблизительно на расстоянии 3–4 мм друг от друга от середины одной из сторон до центра квадрата. При всех операциях бумагу держат только за углы. Образовавшуюся полоску отгибают перпендикулярно плоскости диска так, чтобы образовался четкий сгиб. Проделывают это, держась пальцами за самый конец полоски. После образования сгиба конец, к которому прикасались пальцы, срезают ножницами.

4.2. Проведение хроматографию на бумаге отдельных аминокислот

На место сгиба наносят 1 каплю раствора аминокислоты и высушивают на воздухе. В хроматографическую камеру, которая представляет собой закрытый сосуд, образованный двумя одинаковыми по диаметру крышками или донышками чашки Петри, наливают растворитель, который предварительно тщательно перемешивают. Хроматографическую бумагу помещают в хроматографическую камеру так, чтобы отогнутая полоска находилась в растворителе. Постепенно растворитель перемещается по полоске и смачивает бумагу. Когда фронт растворителя на бумаге будет иметь диаметр 80–90 мм, ее достают из камеры и карандашом отмечают границу фронта растворителя. После этого бумагу сразу же помещают в сушильный шкаф при температуре 70–80ºС на 8–10 мин для удаления растворителя и фиксации аминокислот.

Внимание! Достав бумагу из камеры, ее нужно как можно быстрее поместить в сушильный шкаф, так как ее подсушивание при комнатной температуре может привести к неправильным результатам.

4.3. «Проявление» хроматограммы

В ванночку наливают раствор нингидрина. Высушенную бумагу быстро окунают в него, кладут на грани сухой крышки (или донышка) чашки Петри и сразу же (немедленно!) помещают на 5–6 мин в сушильный шкаф при температуре 90–100°С. После высушивания на диске появляется кольцо соответствующей аминокислоты.

4.4. Определение коэффициентов распределения (Rf) индивидуальных аминокислот

При помощи линейки измеряют расстояние, которое прошла каждая из аминокислот от места старта (места нанесения аминокислоты) до фронта пятна, и расстояние, которое прошел растворитель. После этого по формуле (1) вычисляют значение коэффициента распределения (Rf) для каждой аминокислот.

4.5. Проведение хроматографического разделения аминокислот в контрольном растворе

Хроматографическое разделение аминокислот в контрольном растворе проводят аналогично пп. 4.1–4.4. Определяют коэффициенты распределения для всех проявившихся на хроматограмме аминокислот (аналогично п. 4.5). Сравнивают полученные значения Rf со значениями коэффициентов распределения индивидуальных аминокислот и определяют, какие аминокислоты находились в исследуемом растворе.

4.6. Делают выводы о разделении и определении аминокислот методом круговой хроматографии на бумаге.

5. СОДЕРЖАНИЕ ОТЧЕТА

Отчет составляется с указанием цели, задания, принципа хроматографического метода, включает экспериментальную часть и выводы. В экспериментальной части отражаются этапы проведения работы с кратким их описанием, проводятся расчеты коэффициентов распределения аминокислот и делаются выводы. Полученные хроматограммы с указанием, каким аминокислотам они принадлежат, прикладываются к отчету.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. В чем сущность распределительной хроматографии?

6.2. Каковы особенности хроматографии на бумаге?

6.3. В чем состоит техника бумажной хроматографии?

6.4. Как производится идентификация компонентов в разделяемой смеси?

6.5. Что называют коэффициентом распределения?

6.6. В каких случаях применяют метод хроматографии и чем он удобен?

ХРОМОПРОТЕИДЫ

1. ЦЕЛЬ РАБОТЫ

Количественное определение гемоглобина крови гемиглобинцианидным методом

2. ЗАДАНИЕ

2.1. Количественное определение гемоглобина крови гемиглобинцианидным методом

2.2. Сделать выводы и оформить отчет.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Белки, которые, кроме аминокислот, содержат небелковые компоненты называются сложными (холопротеинами или протеидами). Небелковую часть таких двухкомпонентных систем называют простетической группой, а белковую – апопротеином. Холопротеин может диссоциировать на компоненты: холопротеин Û апопротеин + простетическая группа. Направление данной реакции зависит от прочности связи этих составляющих холопротеина.

Простетическая группа может быть представлена различными по химической природе соединениями. В зависимости от ее строения и свойств сложные белки подразделяются на: 1) хромопротеины, содержащие в качестве небелковой части окрашенный компонент; 2) гликопротеины, включающие в свой состав углеводы и их производные; 3) нуклеопротеины, простетическая группа которых представлена нуклеиновыми кислотами; 4) липопротеины, представляющие собой комплексы липидов и белков; 5) фосфопротеины, в состав которых входит остаток ортофосфорной кислоты; 6) металлопротеины, имеющие в составе своей молекулы ионы металлов.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Количественное определение гемоглобина крови гемиглобинцианидным методом

Гемоглобин окисляют железосинеродистым калием в метгемоглобин (гемиглобин). Последний образует с ацетонциангидрином окрашенный цианметгемоглобин (гемиглобинцианид), который определяют колориметрически.

Ход работы

В пробирку к 5 мл трансформирующего раствора добавляют 0,02 мл крови (достигая при этом разведения в 251 раз). Содержимое пробирки тщательно перемешивают и оставляют стоять на 10 минут, после чего фотометрируют при зеленом светофильтре (длина волны 500-560 нм) в кювете с толщиной слоя 10 мм против трансформирующего раствора. При тех же условиях измеряют оптическую плотность стандартного раствора.

Расчет содержания гемоглобина производят по формуле:

Hb (г%) = Еопст × С × К × 0,001,

где Еоп и Ест – экстинкция опытной и стандартной проб соответственно; С – концентрация гемиглобинцианида в стандартном растворе, мг% (59,75 мг%); К – коэффициент разведения крови (251); 0,001 – коэффициент для пересчета мг% в г%.

Нормальное содержание гемоглобина в крови у мужчин составляет 13,2-16,4 г% (132-164 г/л), у женщин 11,5-14,5 г% (115-145 г/л).

Снижение концентрации гемоглобина в крови является основным лабораторным симптомом анемии. При этом содержание гемоглобина варьирует в широких пределах в зависимости от формы анемии и ее степени. Так, при наиболее частой железодефицитной анемии у большинства больных отмечается относительно умеренное снижение гемоглобина (85-114 г/л), а более выраженное уменьшение (60-84 г/л) наблюдается реже. Значительное снижение гемоглобина (50-80 г/л) в крови характерно для острой кровопотери, гипопластической анемии, гемолитической анемии в стадии гемолитического криза. Повышение концентрации гемоглобина в крови может наблюдаться при миелопролиферативных заболеваниях (эритремии) и симптоматических эритроцитозах (уровень гемоглобина повышается при этом до 180-210 г/л), при сгущении крови вследствие дегидратации. Физиологическое увеличение содержания гемоглобина свойственно новорожденным.

5. СОДЕРЖАНИЕ ОТЧЕТА

Отчет составляется с указанием цели, задания, экспериментальные данные и выводы.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Что такое сложные белки? Какие составные части выделяют в сложных белках?

    1. Как и по какому принципу можно классифицировать сложные белки?

    2. К какой группе сложных белков относится гемоглобин и из каких компонентов он состоит?

6.4. Где локализуется гемоглобин в организме человека? Какова его биологическая роль?

6.5. Что представляет собой глобин и какова его структура в различных гемоглобинах человека?

    1. Назвать разновидности физиологических гемоглобинов?

    2. К каким заболеваниям могут привести гемоглобинопатии?

    3. К какой группе сложных белков относится миоглобин? Какова его биологическая роль?

    4. Каковы особенности строения гемоглобина и миоглобина?

    5. Какова концентрация гемоглобина в крови в норме?

    6. Каким методом можно количественно определить содержание гемоглобина в крови? В чем его принцип?

    7. Назвать известные качественные реакции на геминовую группировку?

НУКЛЕОПРОТЕИДЫ

1. ЦЕЛЬ РАБОТЫ

Изучение состава нуклеопротеидов.

2. ЗАДАНИЕ

2.1. Выделить нуклеопротеиды из дрожжей.

2.2. Провести гидролиз нуклеопротеидов.

2.3. Определить продукты гидролиза при помощи качественных реакций:

  • на белки и пептиды

  • на пуриновые основания

  • пентозы

  • фосфорную кислоту

2.4. Сделать выводы и оформить отчет.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Нуклеопротеиды входят в состав всех клеток организма и выполняют основные функции - служат носителями генетической информации и участвуют в биосинтезе белка. По химической природе эти макромолекулы представляют собой комплекс белков, имеющих, как правило, положительный заряд (гистонов) и нуклеиновых кислот, которые при физиологических значениях рН имеют высокий отрицательный заряд. Таким образом, между белковой частью и нуклеиновой кислотой в нуклеопротеидах возникают электростатические взаимодействия.

Нуклеиновыми кислотами или полинуклеотидами называются высокомолекулярные вещества, состоящие из мононуклеотидов, связанных между собой 3¢,5¢-фосфодиэфирными связями. Нуклеотиды представляют собой соединения, в которых остаток фосфорной кислоты присоединен к нуклеозиду чаще всего 5¢-фосфомоноэфирной связью. К нуклеозидам относят вещества, в которых азотистые основания соединены с пентозой N-гликозидной связью. В зависимости от типа пентозы различают два вида нуклеозидов – дезоксирибонуклеозиды, содержащие 2-дезоксирибозу, и рибонуклеозиды, содержащие рибозу.

Выделяют два вида нуклеиновых кислот: дезоксирибонуклеиновую (ДНК), представляющую собой полидезоксирибонуклеотид, и рибонуклеиновую (РНК) или полирибонуклеотид. В свою очередь, нуклеопротеиды также можно подразделить на две группы: дезоксирибонуклеопротеиды (ДНП), в состав которых входит ДНК, и рибонуклеопротеиды (РНП), содержащие РНК.

Нуклеиновые кислоты также как все полимеры имеют вторичную и третичную структуры. Вторичная структура ДНК имеет вид двутяжной антипараллельной спирали. Схематично она напоминает винтовую лестницу, перила которой образованы дезоксирибозами соединенными фосфорно-эфирными связями по типу 3¢,5¢- связей, а ступени парами азотистых оснований, одно из которых представлено производными пурина, другое - пиримидина. Азотистые основания соединяются по принципу комплементарности. Так, аденин всегда соединяется с тимином (А-Т), а гуанин - с цитозином (Г - Ц) с помощью водородных связей. Третичная структура ДНК образуется в результате дополнительного скручивания в пространстве двуспиральной молекулы. Она имеет вид суперспирали или изогнутой двойной спирали. Вторичная структура РНК - это частично спирализованная одинарная полинуклеотидная цепь, участки спирализации которой удерживаются за счет водородных связей, образованных между комплементарными азотистыми основаниями - А - У и Г - Ц. Так, например, вторичная структура тРНК имеет вид «клеверного листа». Она образуется вследствие внутрицепочечного спаривания комплементарных нуклеотидов отдельных участков тРНК. Те участки молекулы, которые не вовлекаются в образование водородных связей между нуклеотидами, образуют петли. Вторичная структура рРНК представляет собой спиральные участки, соединенные изогнутой одиночной цепью.

Общее содержание ДНК и РНК в клетках зависит от их функционального состояния. В сперматозоидах количество ДНК достигает 60% сухой массы клетки, в большинстве клеток 1-10%. Содержание РНК, как правило, в 5-10 раз превышает содержание ДНК. Основные различия в локализации и функционировании основных типов нуклеиновых кислот приведены в таблице 5.