
- •Оглавление
- •Введение
- •Априорный анализ динамических систем Прохождение случайного сигнала через линейную систему
- •Эволюция фазового вектора системы
- •Эволюция ковариационной матрицы фазового вектора системы
- •Статистическая линеаризация
- •Первый способ
- •Второй способ
- •Вычисление коэффициентов линеаризации
- •Неоднозначность в нелинейных звеньях
- •Нелинейное звено, охваченное обратной связью
- •Моделирование случайных процессов
- •Формирующий фильтр
- •Моделирование белого шума
- •Оценивание статистических характеристик динамических систем методом Монте-Карло
- •Точность оценок
- •Нестационарные динамические системы
- •Стационарные динамические системы
- •Апостериорный анализ динамических систем
- •Фильтр Калмана Модель движения
- •Использование калмановской фильтрации в нелинейных задачах
- •Метод наименьших квадратов
- •Построение оценок
- •Прогноз
- •Использование метода наименьших квадратов в нелинейных задачах
- •Построение матрицы Коши
- •Моделирование измерений
- •Гауссовские случайные величины
- •Случайные векторы
- •Интеграл вероятностей
- •Полиномы Чебышева
- •Интегрирование обыкновенных дифференциальных уравнений
- •Методы Рунге-Кутты
- •Точность результатов численного интегрирования
- •Вложенный метод Дормана-Принса 5(4) порядка
- •Управление длиной шага интегрирования
- •Плотная выдача
- •Московский авиационный институт (Государственный технический университет) Кафедра «Информационно - управляющие комплексы»
- •Пояснительная записка к Курсовому проекту «Релейный самонастраивающийся контур» по курсу «Основы статистической динамики комплексных информационных систем»
- •Москва 2003
- •Титульный лист
- •Раздел «Оглавление»
- •Раздел «Введение»
- •Раздел «Теория»1
- •Раздел «Алгоритм»2
- •Раздел «Программа»3
- •Раздел «Результаты»4
- •Раздел «Выводы»
- •Раздел «Список использованных источников»
- •Приложения
- •Литература
Формирующий фильтр
Как правило, параметры определяется путем приравнивания коэффициентов полиномов числителя и знаменателя в уравнении
при одинаковых степенях .
П
осле
определения передаточной функции
формирующего фильтра результирующая
схема моделирования случайного процесса
выглядит, как показано на рисунке.
Например, спектральная плотность процесса , подлежащего моделированию имеет вид:
,
математическое ожидание
,
а для моделирования используется белый
шум с интенсивностью
,
следовательно, обладающий единичной
спектральной плотностью.
Очевидно, что числитель и знаменатель искомой передаточной функций должны иметь порядки 1 и 2 (в самом деле, будучи возведенной в квадрат по модулю передаточная функция образует частное полиномов 2-й и 4-й степеней)
Т.о. передаточная функция формирующего фильтра в наиболее общем виде выглядит следующим образом:
,
а квадрат ее модуля:
.
Приравняем полученные соотношения:
.
Вынесем за скобку
и
в правой части равенства, приравнивая
тем самым коэффициенты при нулевых
степенях
:
,
откуда с очевидностью вытекают следующие равенства:
;
;
;
.
Т
.о.
структурная схема формирования случайного
процесса
с заданными статистическими характеристиками
из белого шума с единичной спектральной
плотностью выглядит, как показано на
рисунке, с учетом рассчитанных значений
параметров формирующего фильтра.
Моделирование белого шума
Для моделирования случайного процесса с заданными статистическими характеристиками в качестве входного случайного процесса в формирующий фильтр используется белый шум. Однако, точное моделирование белого шума нереализуемо из-за бесконечной дисперсии этого случайного процесса.
По этой причине, в качестве замены белому шуму, воздействующему на динамическую систему, используется случайный ступенчатый процесс. Интервал, на котором реализация случайного процесса сохраняет свое значение неизменной (ширина ступеньки, интервал корреляции), – величина постоянная. Сами значения реализации (высоты ступенек) – случайные величины, распределенные по нормальному закону с нулевым математическим ожиданием и ограниченной дисперсией. Значения параметров процесса – интервал корреляции и дисперсия – определяются характеристиками динамической системы, на которую оказывает воздействие белый шум.
Идея метода основывается на ограниченности полосы пропускания любой реальной динамической системы. Т.е. коэффициент усиления реальной динамической системы уменьшается по мере увеличения частоты входного сигнала, а, следовательно, существует такая частота (меньше бесконечной), для которой коэффициент усиления системы столь мал, что можно положить его нулевым. А это, в свою очередь, означает, что входной сигнал с постоянной, но ограниченной этой частотой, спектральной плотностью, для такой системы будет эквивалентен белому шуму (с постоянной и бесконечной спектральной плотностью).
Параметры эквивалентного случайного
процесса – интервал корреляции
и дисперсия
вычисляются следующим образом:
;
,
где
– эмпирически определяемая граница
полосы пропускания динамической системы.