
- •А.П. Баскаков, е.Ю. Павлюк
- •Содержание
- •Предисловие
- •1. Основные понятия и исходные положения термодинамики
- •1.1. Предмет и метод термодинамики
- •1.2. Термодинамическая система
- •1.3. Термодинамические параметры состояния
- •1.4. Уравнение состояния
- •1.5. Термодинамический процесс
- •Контрольные вопросы
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия
- •2.2. Работа против окружающей среды в закрытой системе
- •2.3. Теплота
- •2.4. Аналитическое выражение первого закона термодинамики для закрытой системы
- •2.5. Теплоемкость газов
- •2.6. Энтальпия
- •Контрольные вопросы и задачи
- •3. Второй закон термодинамики
- •3.1. Энтропия
- •3.2. Изменение энтропии в неравновесных процессах
- •4. Основные термодинамические процессы в газах, парах и смесях
- •4.1. Термодинамические процессы идеальных газов в закрытых системах
- •4.2. Смеси идеальных газов
- •4.3. Термодинамические процессы реальных газов
- •5. Особенности термодинамики открытых систем
- •5.1. Уравнение первого закона термодинамики для потока
- •5.2. Истечение газов и паров
- •5.3. Расчет процесса истечения с помощью h-s диаграммы
- •5.4 Термодинамический анализ процессов в компрессорах.
- •6. Циклы теплосиловых установок
- •6.1. Цикл Карно и второй закон термодинамики
- •6.2. Циклы поршневых двигателей внутреннего сгорания
- •6.3. Цикл газотрубинной установки
- •6.4. Циклы паротурбинных установок
- •6.5. Холодильные установки и тепловые насосы
- •Решения задач и ответы на вопросы
- •Приложение 1
- •Параметры критического состояния
- •Параметры критического состояния
- •620002, Г. Екатеринбург, ул. Мира 19
2.3. Теплота
Помимо макрофизической формы передачи энергии – работы существует также и микрофизическая, т.е. осуществляемая на молекулярном уровне форма обмена энергией между системой и окружающей средой. В этом случае энергия может быть передана системе без совершения работы. Мерой количества энергии, переданной микрофизическим путем, служит теплота.
Теплота может передаваться либо при непосредственном контакте между телами (теплопроводностью, конвекцией), либо на расстоянии (излучением), причем во всех случаях этот процесс возможен только при наличии разности температур между телами.
Как будет показано ниже, элементарное количество теплоты δQ, так же как и δL, не является полным дифференциалом в отличие от дифференциала внутренней энергии dU. За этой математической символикой скрыт глубокий физический смысл различия понятий внутренней энергии, теплоты и работы.
Внутренняя энергия – это свойство самой системы, она характеризует состояние системы. Теплота и работа – это энергетические характеристики процессов механического и теплового взаимодействий системы с окружающей средой. Они характеризуют те количества энергии, которые переданы системе или отданы ею через ее границы в определенном процессе. В системе СИ теплота, внутренняя энергия и работа измеряются в джоулях (1 МДж = 106 Дж; 1 кДж = 103 Дж). Раньше теплота измерялась в килокалориях (1 ккал = 4,1868 кДж). Работа в единицу времени, т. е. мощность, измеряется в ваттах (1 Вт = 1 Дж/с), а тепловая мощность – в килокалориях в час (1 ккал/ч = 1,163 Вт; 1 Гкал/ч = 106 Вт = 1 МВт).
2.4. Аналитическое выражение первого закона термодинамики для закрытой системы
Первый закон термодинамики представляет собой частный случай всеобщего закона сохранения и превращения энергии применительно к тепловым явлениям. В соответствии с уравнением Эйнштейна E=mc2 надо рассматривать единый закон сохранения и превращения массы и энергии. Однако в технической термодинамике мы имеем дело со столь малыми скоростями объекта, что дефект массы равен нулю, и поэтому законs сохранения энергии и массы можно рассматривать независимо.
Закон сохранения и превращения энергии является фундаментальным законом природы, который получен на основе обобщения огромного количества экспериментальных данных и применим ко всем явлениям природы. Он утверждает, что энергия не исчезает и не возникает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида дает эквивалентное количество энергии другого вида.
В числе первых ученых, утверждавших принцип сохранения материи и энергии, был наш соотечественник М. В. Ломоносов (1711 – 1765 гг.).
Пусть некоторому рабочему телу с объемом V и массой М, имеющему температуру Т и давление р, сообщается извне бесконечно малое количество теплоты δQ. В результате подвода теплоты тело нагревается на dТ, а его объем увеличивается на dV.
Повышение температуры тела свидетельствует об увеличении кинетической энергии его частиц. В результате внутренняя энергия тела увеличивается на dU. Поскольку рабочее тело окружено средой, которая оказывает на него давление, то при расширении оно производит механическую работу δL против сил внешнего давления. Так как никаких других изменений в системе не происходит, то по закону сохранения энергии
δQ = dU + δL, (2.7)
т.е. теплота, сообщаемая закрытой системе, идет на приращение ее внутренней энергии и на совершение работы расширения.
Полученное уравнение является математическим выражением первого закона термодинамики. Каждый из трех членов этого соотношения может быть положительным, отрицательным или равным нулю. Рассмотрим некоторые частные случаи.
1. δQ = 0 – теплообмен системы с окружающей средой отсутствует, т.е. теплота к системе не подводится и от нее не отводится. Процесс без теплообмена называется адиабатным. Для него уравнение (2.7) принимает вид
δL= – dU. (2.8)
Следовательно, работа расширения, совершаемая закрытой системой в адиабатном процессе, равна уменьшению внутренней энергии данной системы. При адиабатном сжатии рабочего тела затрачиваемая извне работа целиком идет на увеличение внутренней энергии системы.
2. δL = 0 – при этом объем тела не изменяется, dV = 0. Такой процесс называется изохорным, для него
δQ = dU, (2.9)
т.е. количество теплоты, подведенной к системе при постоянном объеме, равно увеличению внутренней энергии данной системы.
3. dU = 0 – внутренняя энергия системы не изменяется и
δQ = δL, (2.10)
т.е. сообщаемая системе теплота превращается в эквивалентную ей внешнюю работу.
Для системы, содержащей 1 кг рабочего тела,
Δq = du + δl. (2.11)
Проинтегрировав уравнения (2.7) и (2.11) для некоторого процесса, получим выражение первого закона термодинамики в интегральной форме
Q = ∆U + L; q = ∆u + l, (2.12)
где ∆U = U2 – U1, ∆u = u2 – u1.
Из первого закона термодинамики следует, что взаимное превращение тепловой и механической энергии в двигателе должно осуществляться в строго эквивалентных количествах. Двигатель, который позволял бы получать работу без энергетических затрат, называется вечным двигателем первого рода. Ясно, что такой двигатель невозможен, ибо он противоречит первому закону термодинамики. Поэтому первый закон можно сформулировать в виде следующего утверждения: вечный двигатель первого рода невозможен. В 1755 г. Французская академия наук «раз и навсегда» объявила, что не будет больше принимать на рассмотрение какие-либо проекты вечных двигателей.