- •А.П. Баскаков, е.Ю. Павлюк
- •Содержание
- •Предисловие
- •1. Основные понятия и исходные положения термодинамики
- •1.1. Предмет и метод термодинамики
- •1.2. Термодинамическая система
- •1.3. Термодинамические параметры состояния
- •1.4. Уравнение состояния
- •1.5. Термодинамический процесс
- •Контрольные вопросы
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия
- •2.2. Работа против окружающей среды в закрытой системе
- •2.3. Теплота
- •2.4. Аналитическое выражение первого закона термодинамики для закрытой системы
- •2.5. Теплоемкость газов
- •2.6. Энтальпия
- •Контрольные вопросы и задачи
- •3. Второй закон термодинамики
- •3.1. Энтропия
- •3.2. Изменение энтропии в неравновесных процессах
- •4. Основные термодинамические процессы в газах, парах и смесях
- •4.1. Термодинамические процессы идеальных газов в закрытых системах
- •4.2. Смеси идеальных газов
- •4.3. Термодинамические процессы реальных газов
- •5. Особенности термодинамики открытых систем
- •5.1. Уравнение первого закона термодинамики для потока
- •5.2. Истечение газов и паров
- •5.3. Расчет процесса истечения с помощью h-s диаграммы
- •5.4 Термодинамический анализ процессов в компрессорах.
- •6. Циклы теплосиловых установок
- •6.1. Цикл Карно и второй закон термодинамики
- •6.2. Циклы поршневых двигателей внутреннего сгорания
- •6.3. Цикл газотрубинной установки
- •6.4. Циклы паротурбинных установок
- •6.5. Холодильные установки и тепловые насосы
- •Решения задач и ответы на вопросы
- •Приложение 1
- •Параметры критического состояния
- •Параметры критического состояния
- •620002, Г. Екатеринбург, ул. Мира 19
1. Основные понятия и исходные положения термодинамики
1.1. Предмет и метод термодинамики
Термодинамика изучает законы превращения энергии в различных процессах, происходящих в макроскопических системах и сопровождающихся тепловыми эффектами. Макроскопической системой называется любой материальный объект, состоящий из большого числа частиц. Размеры макроскопических систем несоизмеримо больше размеров молекул и атомов.
В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуществляется расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.
Если рассматривать только макроскопические системы, то термодинамика изучает закономерности тепловой формы движения материи, обусловленные наличием огромного числа непрерывно движущихся и взаимодействующих между собой микроструктурных частиц (молекул, атомов, ионов).
Строго говоря, все основные выводы термодинамики получают методом дедукции, используя только два основных эмпирических закона (начала) термодинамики, не привлекая представлений о структуре вещества. Для упрощения понимания материала заочниками мы не будем придерживаться строгой «академичности» изложения.
1.2. Термодинамическая система
Термодинамическая система представляет собой совокупность материальных тел, находящихся в механическом и тепловом взаимодействиях друг с другом и с окружающими систему внешними телами («окружающей средой»).
Выбор системы произволен и диктуется условиями решаемой задачи. Тела, не входящие в систему, называют окружающей средой. Систему отделяют от окружающей среды контрольной поверхностью (оболочкой). Так, например, для простейшей системы – газа, заключенного в цилиндре под поршнем (рис. 1.1), контрольными поверхностями служат стенки цилиндра и поршень, а окружающей средой называется все, что находится снаружи.
Механическое и тепловое взаимодействие термодинамической системы с окружающей средой осуществляются через контрольные поверхности. При механическом взаимодействии с самóй системой или над системой совершается работа. В нашем примере механическая работа производится при перемещении поршня и сопровождается изменением объема системы. Тепловое взаимодействие заключается в переходе теплоты между системой и окружающей средой. В рассматриваемом примере теплота может подводиться к газу через стенки цилиндра.
Рис. 1.1. Газ, находящийся в цилиндре под
поршнем
1 – термодинамическая система (рабочее
тело);
2 – окружающая среда; 3 – контрольная
поверхность
В самом общем случае система может обмениваться со средой и веществом (массообменное взаимодействие). Такая система называется открытой. Потоки газа или пара в турбинах и трубопроводах – примеры открытых систем. Если вещество не проходит через границы системы, то она называется закрытой.
Простейшей термодинамической системой является рабочее тело. В двигателе внутреннего сгорания, например, рабочим телом являются продукты сгорания.
