Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ФОПИ.docx
Скачиваний:
10
Добавлен:
01.05.2019
Размер:
943.09 Кб
Скачать

Атомный силовой микроскоп

Атомный силовой микроскоп (АСМ) (англ. The atomic force microscope (AFM)) — сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер-Ваальса. Но при использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности.

В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно-силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Атомно-силовой микроскоп был изобретён в 1986 году Гердом Биннигом и Кристофом Гербером в США. Атомно-силовой микроскоп применяется для снятия профиля поверхности и для изменения её рельефа, а также для манипулирования микроскопическими объектами на поверхности.

Принцип действия атомного силового микроскопа (АСМ) основан на использовании сил атомных связей, действующих между атомами вещества. На малых расстояниях между двумя атомами (около одного ангстрема, 1 Å = 10–8 см) действуют силы отталкивания, а на больших – силы притяжения. Совершенно аналогичные силы действуют и между любыми сближающимися телами. В сканирующем атомном силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие.

Типовой АСМ показан на рис. 22. Обычно в приборе используется алмазная игла, которая плавно скользит над поверхностью образца (как говорят, сканирует эту поверхность). При изменении силы F, действующей между поверхностью и острием, пружинка П, на которой оно закреплено, отклоняется, и такое отклонение регистрируется датчиком D. В качестве датчика в АСМ могут использоваться любые особо точные и чувствительные – прецизионные – измерители перемещений, например оптические, емкостные или туннельные датчики.

Рис. 22. Схема сканирующего атомно-силового микроскопа

Измерение средних расстояний Лазерные дальномеры

Лазерный дальномер - прибор для измерения расстояний. Широко применяется в инженерной геодезии (при строительстве путей сообщения, гидротехнических сооружений, линий электропередач и т. д.), при топографической съёмке, в военном деле (главным образом для определения расстояний до целей), в навигации, в астрономических исследованиях, в фотографии. Лазерные дальномеры основаны на измерении времени прохождения волн соответствующего диапазона от дальномера до второго конца измеряемой линии и обратно.

Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

(13.1)

г де L - расстояние до обьекта, с - скорость распространения излучения, t –

Рис. 23. Лазерные дальномеры

время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазо-импульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру,то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса) определяется расстояние до объекта.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, изменяющего свои параметры под воздействием электрического сигнала). Обычно используют синусоидальный сигнал с частотой 10...150 МГц (измерительная частота). Отраженное излучение попадает в приемную оптику и фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, определяют расстояние до объекта.

Портативные лазерные дальномеры были разработаны для пехотных подразделений и передовых артиллерийских наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется алюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1.5 МВт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью. Ложные сигналы, отраженные от близлежащих предметов исключаются с помощью схемы стробирования по дальности. Источник питания - малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных схемах, что позволило довести массу дальномера вместе с источником питания до 2кг.