Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ФОПИ.docx
Скачиваний:
10
Добавлен:
01.05.2019
Размер:
943.09 Кб
Скачать

Использование в технике

Если к обкладкам конденсатора Керра подавать импульс напряжения, то ячейка играет роль затвора, длительность действия которого определяется длительностью электрического импульса. Ячейки Керра как модулятор и затвор применяются для управления режимом работы оптических квантовых генераторов.

Благодаря чрезвычайной быстроте установления и исчезновения эффекта Керра оказалось возможным использовать его для многих научных и технических целей.

  1. Измерение расстояний

Для измерения расстояний существуют различные приборы. Для измерения сверхмалых расстояний (меньше 1 мм) пользуются всевозможными микроскопами. Для измерения малых расстояний (от 1 мм до 1 м) пользуются линейками. Для измерения средних расстояний (от 1 м до 1 км) применяют дальномеры различных типов. Изучению методов измерений расстояний описанных выше категорий, за исключением малых, посвящен данный параграф.

Измерение сверхмалых расстояний Сканирующий туннельный микроскоп (стм)

Предназначен для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1—1000 пА при расстояниях около 1 Å. Сканирующий туннельный микроскоп первый из класса сканирующих зондовых микроскопов; атомно-силовой и сканирующий ближнепольный оптический микроскопы были разработаны позднее.

В процессе сканирования игла движется вдоль поверхности образца, туннельный ток поддерживается стабильным за счёт действия обратной связи, и показания следящей системы меняются в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот. Другая методика предполагает движение иглы на фиксированной высоте над поверхностью образца. В этом случае фиксируется изменение величины туннельного тока и на основе данной информации идет построение топографии поверхности.

Таким образом, сканирующий туннельный микроскоп (СТМ) включает следующие элементы:

  • зонд (иглу),

  • систему перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам,

  • регистрирующую систему.

Рис. 21. Типовой СТМ

Регистрирующая система фиксирует значение функции, зависящей от величины тока между иглой и образцом, либо перемещения иглы по оси Z. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Ограничения на использование метода накладываются, во-первых, условием проводимости образца (поверхностное сопротивление должно быть не больше 20 МОм/см²), во-вторых, условием «глубина канавки должна быть меньше её ширины», потому что в противном случае может наблюдаться туннелирование с боковых поверхностей. Но это только основные ограничения. На самом деле их намного больше.

Например, технология заточки иглы не может гарантировать одного острия на конце иглы, а это может приводить к параллельному сканированию двух разновысотных участков. Кроме ситуации глубокого вакуума, во всех остальных случаях мы имеем на поверхности осаждённые из воздуха частицы, газы и т. д. Технология грубого сближения также оказывает колоссальное влияние на действительность полученных результатов. Если при подводе иглы к образцу не удаётся избежать удара иглы о поверхность, то считать иглу состоящей из одного атома на кончике пирамиды будет большим преувеличением.