
- •1.Дайте определения «естествознания», назовите цели естествознания. В чем заключается специфика рационального мышления. Почему физика занимает особое место в современном естествознании?
- •3.Корпускулярная и континуальная концепции описания природы
- •4. Структурные уровни организации материи: микро-, макро-, мегамир.
- •5. Фундаментальные понятия: материя, пространство, время, движение
- •6. Механика Галилея
- •7. Механика Ньютона
- •8. Механический детерминизм. Причинность
- •9. Термодинамика как наука о тепловых процессах. I и II начала термодинамики. Нулевое начало термодинамики.
- •II начало термодинамики.
- •10.Динамические и статистические закономерности. Необратимость в сложных системах.
- •11. Распределение Максвелла. Распределение Больцмана. Распределение Максвелла
- •12. Энтропия в равновесных системах. Энтропия – мера хаоса. Стрела времени. Энтропия равновесных систем
- •13. Энтропия. Вероятностная трактовка.
- •14.Принципы дальнодействия и близкодействия в электромагнетизме.
- •16. Основные следствия сто.
- •17.Назовите основные постулаты ото. Инертная и гравитационная масса.
- •17.Что такое «парадокс близнецов»? Объясните его с помощью формул Лоренца.
- •Замедление времени
- •19.Эмпирические доказательства теории относительности.
- •20. Волна как распространяющееся возмущение поля. Назовите основные характеристики волнового движения.
- •21. Что такое интерференция, дифракция, поляризация? Объясните явление дисперсии света.
- •22. Корпускулярные свойства света.
- •24. В чем состоит суть открытия Эрстеда? в чем отличие силовых линий электрического и магнитного полей?
- •25. Охарактеризуйте вклад м.Фарадея в создание эмкм. Раскройте сущность теории Максвелла. Каким утверждениям соответствуют уравнения Максвелла?
- •26. В чем заключается суть электронной теории г. Лоренца?
- •27. Опишите модель атома, предположенную Резерфордом. Модель атома Бора.
- •28. Волны де Бройля и корпускулярно-волновой дуализм
- •29. Область применимости законов и принцип соответствия. Принцип неопределенности Гейзенберга.
- •30. Объясните понятие «квантовый объект». Понятие состояний в квантовой механике.
- •31. Уравнение Шредингера. Волновая функция. Физический смысл волновой функции.
- •32. Фундаментальные физические взаимодействия.
- •33. Понятие физического вакуума в современной научной картине мира.
- •34. Охарактеризуйте сущность современного эволюционизма.
- •35. Эволюция Вселенной (Фридман, Хаббл, Гамов) и реликтовое излучение.
- •36. Диаграмма Гарцшпрунга-Рессела. Что такое «главная последовательность»? к какому спектральному классу относится Солнце?
- •37. Что такое галактика? Основные типы галактик. Что такое метагалактика?
- •38. Поясните термин «красное смещение». Что такое «эффект Доплера»?
- •39. Запишите и объясните закон Хаббла.
- •40.От чего зависит эволюционный путь звезды? Что является источником энергии звезд? Как проходит эволюция звезды с массой, не превышающей 1,4мс . Как проходит эволюция звезды с массой более 1,4мс .
- •41.В чем заключаются концепции развития геосферных оболочек? современные концепции развития геосферных оболочек
- •42.Сопоставьте и проанализируйте понятие биосфера и ноосфера.
- •43.Основные гипотезы происхождения жизни на Земле.
- •44. В чем особенности термодинамики и энергетики живых систем?
- •45.Какие общие особенности планет Солнечной системы свидетельствуют о едином происхождении планет?
- •46.Поясните распространенность химических элементов в солнечной системе.
- •47.Как происходила дифференциация вещества Земли? Объясните строение Земли.
- •48.Что такое геохронология? На какие части (по степени изученности) подразделяется история Земли?
- •49.Какие элементы называются органогенами и почему? Какие элементы образуют химический состав живых систем?
- •50.Что такое самоорганизация? в чем сущность субстратного и функционального подходов к проблеме самоорганизации химических систем?
- •51.Что такое эволюционная химия? Что можно сказать о естественном отборе химических элементов и их соединений в ходе химической эволюции?
- •52. Что означает саморазвитие каталистических систем? Теория Руденко.
- •53.Перечислите основные теории возникновения жизни.
- •55. Теория биохимической эволюции. Абиогенный синтез
- •56. В чем заключается гипотеза Опарина - Холдейна?
- •57. Что такое гиперцикл? Гиперциклы и зарождение жизни.
- •58 Сформулируйте идеи эволюционной биологии на молекулярно-генетическом уровне.
- •59. В чем суть концепций голобиоза и генобиоза?
- •60. В чем заключается эволюционно-синергетическая парадигма?
- •62. Молекулярные основы жизни
- •63. Генетический код. Свойства генетического кода.
- •64. Генетика и эволюция. Законы Менделя. Доминантная и рецессивная наследственность.
- •Закон единообразия гибридов первого поколения (первый закон Менделя)
- •Закон расщепления (второй закон Менделя)
- •Закон независимого комбинирования (наследования) признаков (третий закон Менделя)
- •65. Наследственная и ненаследственная изменчивость.
- •66. Назовите и объясните основные положения эволюционной теории Дарвина. Основные положения эволюционного учения ч. Дарвина
- •67. Что такое синтетическая теория эволюции, как она соотносится с теорией Дарвина? Основные положения синтетической теории эволюции
- •68 . Что такое микроэволюция? Что такое макроэволюция?
- •69. Назовите и поясните основные факторы эволюции. Что является движущей силой эволюции?
- •70. Назовите формы естественного отбора. Что такое стабилизирующий отбор? Что такое движущий отбор?
- •Движущий отбор
- •Стабилизирующий отбор
- •71. Объясните понятия расы, этноса, нации. Какие понятия связаны с биологическими особенностями, а какие - с социально-культурными?
- •72. Как проявляются факторы эволюции по отношению к человечеству в настоящее время? Какие эволюционные факторы при этом наиболее существенны?
- •73. Антропный принцип. Сильная и слабая версии антропного принципа.
- •74. Фундаментальные взаимодействия и мировые константы.
- •75. Законы сохранения и симметрия.
- •76. Концепция самоорганизации. Открытые системы, обмен энергией, энтропией, информацией. Роль нелинейности и диссипации.
- •77. Неравновесные диссипативные системы. Энтропия и информация
- •78. Основные понятия и принципы синергетики. Открытость, нелинейность, диссипативность
- •79 Порядок и хаос. Бифуркации и параметры порядка.
- •80. Примеры самоорганизации в неживой природе. Самоорганизация в социальных системах
- •Самоорганизация в социальных системах
76. Концепция самоорганизации. Открытые системы, обмен энергией, энтропией, информацией. Роль нелинейности и диссипации.
Концепция самоорганизации в настоящее время приобретает все большее значения, становясь парадигмой исследования обширного класса систем и процессов, происходящих в них. В 70-х годах 20-го века возникла новая наука – синергетика, механизмы самоорганизации и развития. Областью ее исследований является изучение эволюции различных структур, относительная устойчивость которых поддерживается благодаря притоку энергии и вещества извне. В основе синергетики лежит, среди прочих, важное утверждение о том, что материальные системы могут быть закрытыми и закрытыми, равновесными и неравновесными, устойчивыми и неустойчивыми, линейными и нелинейными, статическими и динамическими. Принципиальная же возможность процессов самоорганизации обусловлена тем, что в целом все живые и неживые, природные и общественные системы являются открытыми, неравновесными, нелинейными.
77. Неравновесные диссипативные системы. Энтропия и информация
78. Основные понятия и принципы синергетики. Открытость, нелинейность, диссипативность
Возникновение синергетики связано, в основном, с именами И. Пригожина - бельгийского физика и химика И.Пригожина, лауреата Нобелевской премии 1977 г., немецкого физика Г.Хакена, другого немецкого ученого М. Эйгена (вспомним его гиперциклы), а также наших отечественных ученых Б. Белоусова и Жаботинского.
И.Пригожин, разрабатывая современную термодинамику необратимых процессов (неравновесную термодинамику) открыл явление образования упорядоченных структур из хаотического, неупорядоченного состояния системы, т.е. самоорганизацию и сформулировал теорему о минимуме производства энтропии в стационарном неравновесном состоянии. К своим идеям он пришел, анализируя специфические химические реакции, которые впервые экспериментально были изучены Б. Белоусовым и А. Жаботинским. И. Пригожин со своими сотрудниками И.Стенгерс, Г.Николисом построили математическую модель таких реакций, а также показали, что в сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса к порядку, организованности.
Г. Хакен, изучая процессы самоорганизации, происходящие в лазере, назвал новое направление исследований синергетикой, что в переводе с греческого означает совместное действие, или взаимодействие, и хорошо передает смысл и цель нового подхода к изучению явлений.
Открытость систем. Такие понятия как изолированная (закрытая) система, необратимые процессы являются идеализацией. При изучении обратимых процессов (например, качание маятника в вакууме при отсутствии трения) нет смысла говорить о направлении течения времени, т.к. прошлое, настоящее и будущее в этом случае не отличаются. Поэтому в уравнениях обратимых процессов время выступает всего лишь как параметр, который можно изменять. Но в реальности в случае с маятником всегда присутствует трение, колебания маятника будут затухающими, и прошлое, настоящее и будущее будут уже отличаться. Ранее уже говорилось о том, что необратимых процессов в живой природе эволюционным принципом стало II начало термодинамики, утверждающее, что энтропия изолированной системы возрастает. Именно рост энтропии устанавливает направление протекания процесса, т.е. «стрелу времени».
Нелинейность. Сложные системы являются нелинейными. Для их описания используются нелинейные математические уравнения, т.е. уравнения, в которых искомые величины входят в степенях больше единицы, в составе математических функций (тригонометрических, логарифмических и т.п.) или коэффициенты зависят от свойств среды и особенностей протекания процесса. Нелинейные уравнения могут иметь несколько качественно различных решений. Физически это означает возможность различных путей эволюции системы.
Диссипативность. Великий русский математик А.М.Ляпунов разработал общую теорию устойчивости состояний систем. Очень кратко ее идею можно выразить следующим образом. Устойчивые состояния систем не теряют своей устойчивости при флуктуациях физических параметров, поскольку система за счет внутренних взаимодействий способна погасить возникающие флуктуации. Неустойчивые системы, наоборот, при возникновении флуктуаций способны усиливать их, и, в результате такого нарастания амплитуд возмущений система уходит из стационарного состояния. Критерием эволюции при этом является величина (dS/dt) < 0, которая указывает направление развития физической системы к устойчивому стационарному состоянию. Эти процессы происходят достаточно медленно, поэтому на каждом этапе как бы достигается равновесие. Величина прироста энтропии за единицу времени в единице объема называется функцией диссипации, а системы, в которых функция диссипации отлична от нуля, называются диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного движения и, в конечном счете, в тепло. Практически все системы являются таковыми, поскольку трение и прочие силы сопротивления приводят к диссипации энергии (диссипация < лат. dissipatio – разгонять, рассеивать).