Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.docx
Скачиваний:
3
Добавлен:
25.04.2019
Размер:
550.87 Кб
Скачать

16. Основные следствия сто.

17.Назовите основные постулаты ото. Инертная и гравитационная масса.

Альберт Эйнштейн создал новую теорию относительности или релятивистскую механику

Первый постулат. – все законы одинаковы в инерциальных системах отсчета

Второй постулат – скорость света в вакууме одинакова во всех инерциальных системах отсчета.

Ма́сса (от греч. μάζα) — одна из важнейших физических величин. Первоначально (XVII—XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства — вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям — масса эквивалентна энергии покоя).

В современной физике понятие «количество вещества» имеет другой смысл, а концепцию «масса» можно трактовать несколькими способами:

  • Пассивная гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массывзвешиванием в современной метрологии.

  • Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело — гравитационные массы фигурируют в законе всемирного тяготения.

  • Инертная масса характеризует меру инертности тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчётаодинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

Гравитационные и инертная масса равны друг другу (с высокой точностью — порядка 10−13 — экспериментально[1][2], а в большинстве физических теорий, в том числе всех, подтверждённых экспериментально — точно), поэтому в том случае, когда речь идёт не о «новой физике», просто говорят о массе, не уточняя, какую из них имеют в виду.

В классической механике масса системы тел равна сумме масс составляющих её тел. В релятивистской механике масса не является аддитивной физической величиной, то есть масса системы в общем случае не равна арифметической сумме масс компонентов, а включает в себя энергию связи, а также энергию движения частиц друг относительно друга.

Прямые обобщения понятия массы включают в себя тензорные присоединённую массу и эффективную массу — как характеристики инерциальных свойств системы тело плюс среда вгидродинамике и квантовой теории. В квантовой теории рассматриваются также поля с нестандартными кинетическими членами, например, поле Хиггса, которые можно рассматривать как поля, масса квантов которых зависит от их энергии.

17.Что такое «парадокс близнецов»? Объясните его с помощью формул Лоренца.

Парадо́кс близнецо́в — мысленный эксперимент, при помощи которого пытаются «доказать» противоречивость специальной теории относительности. Согласно СТО, с точки зрения «неподвижных» наблюдателей все процессы у двигающихся объектов замедляются. С другой стороны, принцип относительности декларирует равноправие инерциальных систем отсчёта. На основании этого строится рассуждение, приводящее к кажущемуся противоречию. Для наглядности рассматривается история двух братьев-близнецов. Один из них (далее путешественник) отправляется в космический полёт, второй (далее домосед) — остаётся на Земле. Чаще всего «парадокс» формулируется следующим образом:

Формулировка I. С точки зрения домоседа часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа. С другой стороны, относительно путешественника двигалась Земля, поэтому отстать должны часы домоседа. На самом деле братья равноправны, следовательно, после возвращения их часы должны показывать одно время.

Тем не менее, согласно СТО отставшими окажутся часы путешественника. В таком нарушении видимой симметричности братьев и усматривается противоречие.

Объяснить парадокс, подобный «парадоксу близнецов», можно при помощи двух подходов:

1) Выявить происхождение логической ошибки в рассуждениях, которые привели к противоречию;

2) Провести детальные вычисления величины эффекта замедления времени с позиции каждого из братьев.

Первый подход зависит от деталей формулировки парадокса. В разделах «Простейшие объяснения» и «Физическая причина парадокса» будут приведены различные версии «парадокса» и даны объяснения того, почему противоречия на самом деле не возникает.

В рамках второго подхода расчёты показаний часов каждого из братьев проводятся как с точки зрения домоседа (что обычно не представляет труда), так и с точки зрения путешественника. Так как последний менял своюсистему отсчёта, возможны различные варианты учёта этого факта. Их условно можно разделить на две большие группы.

К первой группе относятся вычисления на основе специальной теории относительности в рамках инерциальных систем отсчёта. В этом случае этапы ускоренного движения считаются пренебрежимо малыми по сравнению с общим временем полёта. Иногда вводится третья инерциальная система отсчёта, движущаяся навстречу путешественнику, при помощи которой показания его часов «передаются» брату-домоседу. В разделе «Обмен сигналами» будет приведен простейший расчёт, основанный на эффекте Доплера.

Ко второй группе относятся вычисления, учитывающие детали ускоренного движения. В свою очередь, они делятся по признаку использования или неиспользования в них теории гравитации Эйнштейна (ОТО). Расчёты с использованием ОТО основаны на введении эффективного гравитационного поля, эквивалентного ускорению системы, и учёте изменения в нём темпа хода времени. Во втором способе неинерциальные системы отсчёта описываются в плоском пространстве-времени и понятие гравитационного поля не привлекается. Основные идеи этой группы расчётов будут представлены в разделе «Неинерциальные системы отсчёта».

В основе СТО лежат преобразования Лоренца. Для понимания сути парадокса близнецов необходим аккуратный анализ основных кинематических эффектов, которые из них следуют. Рассмотрим две системы отсчёта   и  , пространственные оси которых параллельны друг другу. Пусть система   движется относительно   вдоль оси   со скоростью  , тогда:

где   — координата и время события, измеренные в «неподвижной» системе отсчёта  , а   — координата и время того же события для наблюдателя, связанного с «движущейся» системой  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]