Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_matematike.docx
Скачиваний:
4
Добавлен:
24.04.2019
Размер:
1.08 Mб
Скачать

2. Интегрирование рациональных функций.

Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов:

Шаг 1. Преобразование неправильной рациональной дроби

Если дробь неправильная (т.е. степень числителя P(x) больше степени знаменателя Q(x)), разделим многочлен P(x) на Q(x). Получим следующее выражение:

где - правильная рациональная дробь.

Шаг 2. Разложение знаменателя на простейшие дроби

Запишем многочлен знаменателя Q(x) в виде

где квадратичные функции являются несократимыми, то есть не имеющими действительных корней.

Шаг 3. Разложение рациональной дроби на сумму простейших дробей.

Запишем рациональную функцию в следующем виде:

Общее число неопределенных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , ... должно быть равно степени знаменателя Q(x). Затем умножим обе части полученного уравнения на знаменатель Q(x) и приравняем коэффициенты при слагаемых с одинаковыми степенями x. В результате мы получим систему линейных уравнений относительно неизвестных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , .... Данная система всегда имеет единственное решение. Описанный алгоритм представляет собой метод неопределенных коэффициентов.

Шаг 4. Интегрирование простейших рациональных дробей.

Простейшие дроби, полученные при разложении произвольной правильной рациональной дроби, интегрируются с помощью следующих шести формул:

У дробей с квадратичным знаменателем сначала необходимо выделить полный квадрат:

где

Затем применяются следующие формулы:

Интеграл может быть вычислен за k шагов с помощью формулы редукции

3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.

Координаты точки Д:

4. Вычислить .

Применим правило Лопиталя

БИЛЕТ № 6.

1. Интегрирование тригонометрических функций.

1. Интеграл вида .

Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегралы этого вида вычисляются с помощью подстановки . Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

2. Интеграл вида если функция R является нечетной относительно cosx.

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

Функция может содержать cosx только в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительно sinx.

3. Интеграл вида если функция R является нечетной относительно sinx.

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

Интеграл вида функция R четная относительно sinx и cosx.

Для преобразования функции R в рациональную используется подстановка

t = tgx.

Тогда

4. Интеграл произведения синусов и косинусов различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]