
- •1. Линейные операции над матрицами. Умножение матриц.
- •2. Неопределённый интеграл. Определение, таблица.
- •3. Найти косинус угла при вершине с в треугольнике авс, если известны координаты вершин треугольника: а (-1;0;4), в (0;-1;3) и с (1;0;4).
- •4. Вычислить интеграл .
- •1. Обратная матрица. Формула для нахождения обратной матрицы.
- •2. Интегрирование рациональных функций.
- •3. Найти угол между векторами и , если а (1;5;8), в (-3;7;2), с (6;4;-1), точка д является серединой отрезка ав.
- •4. Вычислить .
- •1. Интегрирование тригонометрических функций.
- •2. Вектор-функция. Выражение для кривизны в произвольных координатах.
- •3. Найти обратную матрицу к матрице и сделать проверку.
- •4. Вычислить .
- •1. Необходимое условие существования точек локального экстремума функций.
- •2. Интегрирование иррациональных функций.
- •3. Решить систему методом Крамера.
- •4. Исследовать функцию на непрерывность и сделать чертёж её графика.
- •1. Линейно зависимые и линейно независимые системы векторов в пространстве r2 и r3.
- •2. Взаимное расположение прямой и плоскости в пространстве.
- •3. Найти , если , и известны координаты векторов и : , .
- •4. Найти асимптоты функции .
- •1. Базис. Координаты вектора.
- •2. Выпуклость, вогнутость и точки перегиба. Их связь со второй производной.
- •3. Вычислить .
- •4. Вычислить .
- •1. Преобразование координат вектора при переходе к новому базису.
- •2. Теорема о сравнении пределом двух функций.
- •3. Решить систему методом Гаусса.
- •4. Вычислить интеграл .
- •1. Векторное произведение векторов и его свойства.
- •2. Бесконечно малые и бесконечно большие функции и связь между ними.
- •3. Выполнить действия: .
- •4. Вычислить .
- •1. Скалярное произведение и его свойства.
- •2. Первый замечательный предел.
- •3. . Найти обратную матрицу.
- •1. Евклидово пространство. Длина вектора, угол между векторами.
- •2. Второй замечательный предел.
- •3. Решить систему методом Гаусса.
- •4. Вычислить .
- •1. Смешанное произведение векторов и его свойства.
- •2. Определение производной. Таблица производных.
- •3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
- •4. Зависимость у от х задана параметрически . Найти .
- •1. Виды уравнений прямой на плоскости.
- •2. Теорема Ролля.
- •3. Вычислить координаты вектора , перпендикулярного вектору , если .
- •4. Вычислить .
- •1. Виды уравнений прямой в пространстве. Скрещивающиеся прямые.
- •2. Теорема Коши.
- •3. Выполнить действия .
- •4. Найти точки разрыва, исследовать их характер и построить график функции
- •1. Приведение уравнения кривой второго порядка к каноническому виду (без поворотов).
- •2. Свойства определителей n-го порядка.
- •3. Вычислить интеграл .
- •4. Найти точку пересечения прямой и плоскости .
- •1. Правило Лопиталя.
- •3. Вычислить интеграл .
- •4. Найти наибольшее и наименьшее значение функции на отрезке
3. Решить систему методом Гаусса.
Расширенная матрица системы:
Система совместна и имеет единственное решение
Получим систему уравнений:
Проверка:
4. Вычислить .
БИЛЕТ № 16.
1. Смешанное произведение векторов и его свойства.
Смешанным
произведением векторов
,
и
называется число, равное скалярному
произведению вектора
на вектор, равный векторному произведению
векторов
и
.
Обозначается
или
(
,
,
).
Смешанное произведение
по модулю равно объему параллелепипеда,
построенного на векторах
,
и
.
c b
Свойства смешанного произведения:
1)Смешанное произведение равно нулю, если:
а) хоть один из векторов равен нулю;
б) два из векторов коллинеарны;
в) векторы компланарны.
2)
3)
4)
5)
Объем треугольной пирамиды, образованной
векторами
,
и
,
равен
6)
Если
,
,
то
2. Определение производной. Таблица производных.
Пусть
функция y = f(x) определена в промежутке
X. Производной
функции y = f(x) в точке хo
называется предел
=
.
Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.
Если же рассматриваемый предел равен ∞ (или -∞ ), то при условии, что функция в точке хo непрерывна, будем говорить, что функция f(x) имеет в точке хo бесконечную производную.
Производная
обозначается символами y '
, f '
(xo),
,
.
Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том, что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке хo; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t0.
Таблица производных:
1. (um)' = m um-1 u' (m принадлежит R1 )
2. (au)' = au lna× u'.
3. (eu)' = eu u'.
4. (loga u)' = u'/(u ln a).
5. (ln u)' = u'/u.
6. (sin u)' = cos u× u'.
7. (cos u)' = - sin u× u'.
8. (tg u)' = 1/ cos2u× u'.
9. (ctg u)' = - u' / sin2u.
10.
(arcsin u)' = u' /
.
11. (arccos u)' = - u' / .
12. (arctg u)' = u'/(1 + u2).
13. (arcctg u)' = - u'/(1 + u2).
3. Привести уравнение к каноническому виду, определить вид кривой и построить её.
В ид кривой – гипербола.
y
3+
3
-15/2 3/2
-3 0 x
3
4. Зависимость у от х задана параметрически . Найти .
БИЛЕТ № 17.
1. Виды уравнений прямой на плоскости.
Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0, причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 0. Это уравнение первого порядка называют общим уравнением прямой.
В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
C = 0, А 0, В 0 – прямая проходит через начало координат
А = 0, В 0, С 0 { By + C = 0}- прямая параллельна оси Ох
В = 0, А 0, С 0 { Ax + C = 0} – прямая параллельна оси Оу
В = С = 0, А 0 – прямая совпадает с осью Оу
А = С = 0, В 0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.
1. Уравнение прямой по точке и вектору нормали.
В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.
2. Уравнение прямой, проходящей через две точки.
Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:
Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.
На плоскости записанное выше уравнение прямой упрощается:
если х1 х2 и х = х1, еслих1 = х2.
Дробь
=
k
называется угловым коэффициентом
прямой.
3. Уравнение прямой по точке и угловому коэффициенту.
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и
обозначить
,
то полученное уравнение называется
уравнением прямой с угловым коэффициентом
k.
4. Уравнение прямой по точке и направляющему вектору.
Каждый ненулевой вектор (1, 2), компоненты которого удовлетворяют условию А1 + В2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0.
5. Уравнение прямой в отрезках.
Если в общем уравнении прямой Ах + Ву + С = 0 С 0, то, разделив на –С, получим:
или
,
где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
6. Нормальное уравнение прямой.
Если
обе части уравнения Ах + Ву + С = 0 разделить
на число
,
которое называется нормирующем
множителем, то получим xcos
+ ysin
- p
= 0 – нормальное уравнение прямой. Знак
нормирующего множителя надо выбирать
так, чтобы С
< 0.
р – длина перпендикуляра, опущенного из начала координат на прямую, а - угол, образованный этим перпендикуляром с положительным направлением оси Ох.
7.
Определение. Прямая, проходящая через
точку М1(х1,
у1)
и перпендикулярная к прямой у = kx
+ b
представляется уравнением:
2. Теорема о производной сложной функции.
Теорема.
Пусть y
= f(x);
u
= g(x),
причем область значений функции u
входит в область определения функции
f.
Тогда
.
Доказательство.
( с учетом того, что если x0, то u0, т.к. u = g(x) – непрерывная функция)
Тогда
.
Теорема доказана.
3.
Вычислить значение выражения
.
4.
Найти значение y’
в точке
,
если зависимость у от х задана неявно
уравнением
.
БИЛЕТ № 18.
1. Виды уравнений плоскости в пространстве.
Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:
Ax
+ By
+ Cz
+ D
= 0, где А, В, С – координаты вектора
-вектор
нормали к плоскости.
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох
В = 0 – плоскость параллельна оси Оу
С = 0 – плоскость параллельна оси Оz
D = 0 – плоскость проходит через начало координат
А = В = 0 – плоскость параллельна плоскости хОу
А = С = 0 – плоскость параллельна плоскости хОz
В = С = 0 – плоскость параллельна плоскости yOz
А = D = 0 – плоскость проходит через ось Ох
В = D = 0 – плоскость проходит через ось Оу
С = D = 0 – плоскость проходит через ось Oz
А = В = D = 0 – плоскость совпадает с плоскостью хОу
А = С = D = 0 – плоскость совпадает с плоскостью xOz
В = С = D = 0 – плоскость совпадает с плоскостью yOz
1. Уравнение плоскости, проходящей через три точки.
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат.
Для
того, чтобы произвольная точка М(x,
y,
z)
лежала в одной плоскости с точками М1,
М2,
М3
необходимо, чтобы векторы
были компланарны, т.е. (
)
= 0
Таким
образом,
2. Уравнение плоскости, проходящей через три точки:
3. Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.
Пусть
заданы точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2)
и вектор
.
Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору .
Векторы
и
вектор
должны быть компланарны, т.е.
(
)
= 0. Уравнение плоскости:
3. Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости.
Пусть
заданы два вектора
и
,
коллинеарные плоскости. Тогда для
произвольной точки М(х, у, z),
принадлежащей плоскости, векторы
должны быть компланарны. Уравнение
плоскости:
4. Уравнение плоскости по точке и вектору нормали.
Теорема.
Если в пространстве задана точка М0(х0,
у0,
z0),
то уравнение плоскости, проходящей
через точку М0
перпендикулярно вектору нормали
(A,
B,
C)
имеет вид: A(x
– x0)
+ B(y
– y0)
+ C(z
– z0)
= 0.
Доказательство.
Для произвольной точки М(х, у, z),
принадлежащей плоскости, составим
вектор
.
Т.к. вектор
- вектор нормали, то он перпендикулярен
плоскости, а, следовательно, перпендикулярен
и вектору
.
Тогда скалярное произведение
= 0. Таким образом, получаем уравнение плоскости
Теорема доказана.
5. Уравнение плоскости в отрезках.
Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)
,
заменив
,
получим уравнение плоскости в отрезках:
Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.
6. Уравнение плоскости в векторной форме.
где
-
радиус- вектор текущей точки М(х, у, z),
- единичный вектор, имеющий направление,
перпендикуляра, опущенного на плоскость
из начала координат; ,
и
- углы, образованные этим вектором с
осями х, у, z;
p
– длина этого перпендикуляра.
В координатах это уравнение имеет вид:
xcos + ycos + zcos - p = 0.