Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
as.doc
Скачиваний:
37
Добавлен:
24.04.2019
Размер:
2.25 Mб
Скачать

1.7.3. Машини Тьюринґа

Машина Тьюринґа, що була описана А.Тьюринґом 1936 року, є теоретичною моделлю обчислювальної машини. Машину Тьюринґа (МТ) (рис. 1.3) слід розглядати як одну з можливих формалізацій поняття алгоритму. Її робота може бути описана таким чином.

Рис. 1.3. Схема машини Тьюринґа.

Розглянемо стрічку, розділену на окремі комірки; ця стрічка є потенційно нескінченною в обидва боки. У кожній комірці може бути записаний певний символ з деякого заданого алфавіту A. Машина Тьюринґа в будь-який момент часу може перебувати в певному стані (множина станів S є скінченною) і вказувати на певну комірку.

Машина Тьюринґа в залежності від поточного символа, на який вона вказує, може записати на його місце будь-який інший символ (він може співпадати зі старим), зсунутися на один символ вліво або вправо, змінити свій вміст чи зупинитися (часто вважається, що машина зупиняється автоматично, якщо немає жодної інструкції, яку вона могла б виконати). Робота машини Тьюринґа визначається її програмою.

Програма машини Тьюринґа є послідовністю інструкцій, кожна з яких має вигляд

aisj → ak sl I,

де ai, ak A; sl, sm S, I {R, L, H}.

Цей запис читається так: якщо машина перебуває в стані sl і зчитує символ ai, вона повинна записати в поточну позицію символ ak, перейти до стану sm і зсунутися вправо (відповідає літері R), вліво (відповідає літері L) або зупинитися (відповідає літері H).

Вважається, що на початку роботи машина перебуває на лівому кінці стрічки в початковому стані s0. Вона виконує операції, що визначаються її програмою. Якщо вона в деякий момент зупиняється, результатом роботи алгоритму вважається послідовність символів, яка записана на стрічці в момент зупинки.

Приклад 1.9. Наведемо програму для машини Тьюринґа, яка обчислює функцію x+y, де x,y – натуральні числа. Необхідно домовитися про відображення цих чисел. Стандартним для машини Тьюринґа є подання натурального числа n послідовністю з n+1 одиниць.

Ідея реалізації такої програми могла б полягати у тому, щоб замінити крайній зліва та крайній справа символи «1» на «0», а роздільник «0» – на «1». Якби були доступні відповідні команди, це можна було б зробити просто і швидко, але ми обмежені жорсткими рамками машини Тьюринґа. За таких умов схема алгоритму полягає в такому: рухатися вправо до виявлення першої одиниці (початок першого числа); як тільки вона буде виявлена, замінити її на нуль і перейти в інший стан s1. Потім рухатися вправо, поки 0, який розділяє два числа, не буде замінений на 1; при цьому знову змінити стан. Далі рухатися вправо до появи першого нуля (кінця другого доданку). Після цього зсунутися вліво, замінити останню 1 на 0 та зупинитися.

Програма може мати вигляд:

0s0 → 0 s0R

1s0 → 0 s1R

1s1 → 1 s1R

0s1 → 1 s2R

1s2 → 1 s2R

0s2 → 0 s3L

1s3 → 0 s4H.

Наведений приклад показує, що машина Тьюринґа є дуже незручною для програмування. Ці незручності пов’язані з тим, що:

  • немає довільного доступу до пам’яті; якщо, наприклад, машина вказує на першу комірку, а треба перейти до десятої, машина повинна послідовно переглянути другу, третю і т.ін. комірки;

  • неструктурованість записів на стрічці; заздалегідь невідомо, де закінчується одне число і починається інше;

  • дуже обмежений набір команд; відсутні, наприклад, основні арифметичні операції.

Універсальну машину Тьюринґа можна неформально визначити як машину, яка може сприймати програму для обчислення будь-якої функції, яку, в принципі, можна обчислити за допомогою спеціалізованої машини M1 і надалі працювати, як машина M1. Можна довести, що таку машину можна побудувати.

Багатство можливостей конструкції Тьюринґа полягають у тому, що якщо якісь алгоритми A та B реалізуються машинами Тьюринґа, то можна будувати програми машин Тьюринґа, які реалізують композиції алгоритмів A та B, наприклад, виконати A, потім виконати B або виконати A знову. Якщо в результаті утворилося слово «так», то виконати B. У протилежному випадку не виконувати B або виконувати по черзі A, B, поки B не дасть відповідь «ні».

У інтуїтивному сенсі такі композиції є алгоритмами. Тому їхня реалізація за допомогою машини Тьюринґа служить одним із засобів обґрунтування універсальності конструкції Тьюринґа.

Реалізованість таких композицій доводиться у загальному вигляді, незалежно від особливостей конкретних алгоритмів A та B. Доведення полягає в тому, що вказується засіб побудови з програм A та B програми требаї композиції. Нехай, наприклад, треба побудувати машину A \cdot B, еквівалентну послідовному виконанню алгоритмів A та B. Поки виконується алгоритм A, у програмі A\cdot B працює частина A без урахування частини B. Коли алгоритм A дійде до кінця, то замість зупинки відбудеться перехід у перший стан частини B, і потім частина B буде працювати звичайним чином, наче частини A й не було.

Аналогічно конструюють й інші композиції машин Тьюринґа; щораз будуються загальні правила, які визначають, що на що змінювати у вихідних програмах.

Описуванняючи різноманітні алгоритми для машин Тьюринґа і стверджуючи реалізованість усіляких композицій алгоритмів, Тьюринґ переконливо показав розмаїтість можливостей запропонованої ним конструкції, що дозволило йому виступити з такою тезою:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]