
- •Isbn 978-5-06-005815-4 © фгуп «Издательство «Высшая школа», 2007
- •Предисловие
- •Введение
- •Вода в природе и жизни человека
- •Водные объекты. Понятие о гидросфере
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод и практическое значение гидрологии
- •2. В числителе приведено полное, в знаменателе — безвозвратное водопотребление.
- •Глава 1 химические и физические свойства природных вод
- •Вода как вещество, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды 1.3.1. Агрегатные состояния воды и фазовые переходы
- •Плотность воды
- •Тепловые свойства воды
- •Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •Фундаментальные законы физики и их использование при изучении водных объектов
- •Водный баланс
- •Баланс содержащихся в воде веществ
- •Тепловой баланс
- •Основные закономерности движения природных вод
- •Классификация видов движения воды
- •Расход, энергия, работа и мощность водных потоков
- •Силы, действующие в водных объектах
- •Уравнение движения водного потока
- •Вертикальная устойчивость вод
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •Вода на земном шаре
- •Современные и ожидаемые изменения климата и гидросферы земли
- •Круговорот теплоты на земном шаре и роль в нем природных вод
- •Круговорот воды на земном шаре
- •И водные ресурсы Земли», 1974)
- •Вод в грунтах
- •Круговорот содержащихся в воде веществ
- •Влияние гидрологических процессов на природные условия
- •Водные ресурсы земного шара, частей света и россии
- •Та блица 3.6. Средние многолетние (1930—2000) водные ресурсы России*
- •Глава 4 гидрология ледников
- •Происхождение ледников и их распространение на земном шаре
- •Типы ледников
- •Образование и строение ледников
- •Питание и абляция ледников, баланс льда и воды в ледниках
- •Режим и движение ледников
- •Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •Происхождение подземных вод и их распространение на земном шаре
- •Физические и водные свойства грунтов. Виды воды в порах грунтов
- •Физические свойства грунтов
- •Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •Классификация подземных вод. Типы подземных вод по характеру залегания
- •Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •Воды зоны насыщения. Грунтовые воды
- •5.3.5. Другие типы подземных вод
- •Движение подземных вод
- •Водный баланс и режим подземных вод
- •Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •Режим грунтовых вод
- •Провинции: а — кратковременного питания, б— сезонного питания, в — круглогодичного питания (I—XII — месяцы)
- •Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек.
- •Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •Реки и их распространение на земном шаре
- •Водосбор и бассейн реки
- •По линии а — б:
- •Сток; 8 — русла рек
- •Морфометрические характеристики бассейна реки
- •Физико-географические и геологические характеристики бассейна реки
- •Река и речная сеть
- •Долина и русло реки
- •Продольный профиль реки
- •Плес; Пр — перекат
- •Питание рек
- •Виды питания рек
- •Классификация рек по видам питания
- •Расходование воды в бассейне реки
- •Водный баланс бассейна реки
- •Уравнение водного баланса бассейна реки
- •Структура водного баланса бассейна реки
- •Водный режим рек
- •Виды колебаний водности рек
- •1 Числитель — данные за 1942—1955 гг., знаменатель — за 1956—1969 гг. 2 Данные за 1941— 1967 гг. 3 Данные за 1968—1987 гг. Прочерк означает отсутствие данных.
- •Фазы водного режима рек. Половодье, паводки, межень
- •Расчленение гидрографа по видам питания
- •Классификация рек по водному режиму
- •Типы: а — дальневосточный (р. Витим, г. Бодайбо, 1937 г.); 6 — тянь-шанский (р. Терек, с. Казбеги,
- •1937 Г.) (I—XII — месяцы)
- •Речной сток
- •Составляющие речного стока
- •Факторы и количественные характеристики стока воды
- •Пространственное распределение стока воды на территории снг
- •Движение воды в реках
- •Распределение скоростей течения в речном потоке
- •Динамика речного потока
- •Закономерности трансформации паводков
- •Движение речных наносов
- •Происхождение, характеристики и классификация речных наносов
- •Частиц, мм 1,0 0,5 0,2 0,1 0,05 0,01 0,005 0,001
- •Движение влекомых наносов
- •Движение взвешенных наносов
- •Сток наносов
- •И связи между ними (б):
- •Русловые процессы
- •Физические причины и типизация русловых процессов
- •Микроформы речного русла и их изменения
- •Мезоформы речного русла и их изменения
- •Макроформы речного русла и их изменения
- •Деформации продольного профиля русла
- •Устойчивость речного русла
- •Термический и ледовый режим рек 6.12.1. Тепловой баланс участка реки
- •Ледовые явления
- •Основные черты гидрохимического и гидробиологического режима рек
- •Гидрохимический режим рек
- •Гидробиологические особенности рек
- •Устья рек
- •Факторы формирования, классификация и районирование устьев рек
- •С блокирующей косой
- •Особенности гидрологического режима устьевого участка реки
- •Особенности гидрологического режима устьевого взморья
- •Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •2 4 6 8 1012141618202224 Часы
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •Профиль берега
- •Водный баланс озер
- •Уравнение водного баланса озера
- •Структура водного баланса озера
- •Водообмен в озере
- •Колебания уровня воды в озерах
- •Термический и ледовый режим озер
- •Тепловой баланс озер
- •Термическая классификация озер
- •Термический режим озер в условиях умеренного климата
- •Ледовые явления на озерах
- •Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •Гидрохимические характеристики озер
- •Гидробиологические характеристики озер
- •Наносы и донные отложения в озерах
- •Водные массы озер
- •Изменения гидрологического режима каспийского и аральского морей
- •Проблемы, связанные с судьбой Каспийского и Аральского морей
- •Каспийское море
- •Влияние озер на речной сток. Хозяйственное использование озер
- •Глава 8 гидрология водохранилищ
- •Назначение водохранилищ и их размещение на земном шаре
- •Типы водохранилищ
- •Основные характеристики водохранилищ
- •Водный режим водохранилищ
- •Термический и ледовый режим водохранилищ
- •Гидрохимический и гидробиологический режим водохранилищ
- •Заиление водохранилищ и переформирование их берегов
- •Водные массы водохранилищ
- •Влияние водохранилищ на речной сток и окружающую природную среду
- •Глава 9 гидрология болот
- •Происхождение болот и их распространение на земном шаре
- •Типы болот
- •Строение, морфология и гидрография торфяных болот
- •Развитие торфяного болота
- •Фазы: 7 —низинная; 2—переходная; 3— 6— верховая;
- •Водный баланс и гидрологический режим болот
- •Влияние болот и их осушения на речной сток. Практическое значение болот
- •Глава 10 гидрология океанов и морей
- •Мировой океан и его части. Классификация морей
- •Происхождение, строение и рельеф дна мирового океана. Донные отложения
- •Происхождение ложа океана
- •Рельеф дна Мирового океана
- •Донные отложения
- •Водный баланс мирового океана
- •Солевой состав и соленость вод океана
- •Солевой состав вод океана
- •Распределение солености в Мировом океане
- •Термический режим мирового океана
- •Тепловой баланс Мирового океана
- •Распределение температуры в Мировом океане
- •2,7 3,8 5,5 4,4 2,9 2,2 Южное полушарие
- •Факторы, определяющие плотность морской воды
- •Распределение плотности в Мировом океане
- •Морские льды
- •Ледообразование в море
- •Физические свойства морского льда
- •Движение льдов
- •10.7.4. Ледовитость океанов и морей
- •Оптические свойства морской воды
- •Акустические свойства морской воды
- •Волны зыби
- •Деформация волн у берега
- •Волны цунами
- •Внутренние волны
- •Приливы
- •Основные элементы приливов
- •Приливообразующая сила
- •Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- •Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- •Приливы в ограниченном водоеме. Сейши
- •Морские течения
- •10.12.1. Силы, формирующие течения. Классификация морских течений
- •Теория ветровых течений
- •Течение
- •Плотностные течения
- •Циркуляция вод в Мировом океане
- •Уровень океанов и морей
- •Кратковременные колебания уровня
- •Сезонные колебания уровня
- •Водные массы океана
- •Основы учения о водных массах
- •Основы г, s-анализа водных масс
- •Водные массы Мирового океана
- •Взаимодействие океана и атмосферы. Океан и климат
- •Ресурсы мирового океана и его экологическое состояние
- •Ресурсы Мирового океана
- •Литература Основная
- •Богословский б. Б. И др. Общая гидрология,— ji.: Гидрометеоиздат, 1984,—356 с.
- •VI Всероссийский гидрологический съезд. 28 сентября — 1 октября 2004 г. Санкт- Петербург. Тезисы докладов. СПб.: Гидрометеоиздат, 2004.
- •Типы рек
Классификация рек по видам питания
У каждой реки доля отдельных видов питания может быть различной. Определение в каждом конкретном случае вклада различных видов питания в речной сток — задача исключительно сложная. Наиболее точно ее можно решить либо с применением «меченых атомов», т. е. путем радиоактивной «маркировки» вод различного происхождения, либо путем анализа изотопного состава природных вод. Более простой, но приближенный способ выделения различных видов питания — это графическое расчленение гидрографа (см. разд. 6.8.4).
Известный русский климатолог А. И. Воейков был первым, предложившим классификацию рек земного шара по видам питания. Классификация Воейкова одновременно была и районированием земного шара по характеру питания рек. Были выделены области, где реки получают питание преимущественно от таяния сезонного снега и ледников; области, где реки получают воду преимущественно от дождей; области, где постоянных водотоков нет.
В настоящее время более распространена классификация рек по источникам, или видам питания, М. И. Львовича. Для определения степени преобладания того или иного вида питания приняты три градации. Если один из видов питания дает более 80 % годового стока реки, следует говорить об исключительном значении данного вида питания (другие виды питания не учитываются). Если на долю данного вида питания приходится от 50 до 80 % стока, то этому виду питания придается преимущественное значение (другие виды питания учитываются лишь, если на их долю приходится больше 10 % годового стока). Если же ни один из видов питания не дает больше 50 % годового стока, то такое питание называют смешанным. Указанные диапазоны градаций (80 и 50 %) относятся ко всем видам питания, кроме ледникового. Для ледникового питания соответствующие диапазоны градаций уменьшены до 50 и 25 %.
Большая часть рек на территории бывшего СССР имеет преобладающее снеговое питание. Почти исключительно снеговое питание имеют реки Северного Казахстана и Заволжья. Реки дождевого питания занимают южную часть территории к востоку от Байкала, а также бассейны Яны и Индигирки, Черноморское побережье Кавказа и Крыма, Северный Кавказ. Ледниковое питание имеют реки на Кавказе и в Средней Азии.
Расходование воды в бассейне реки
Поступающие на поверхность бассейна дождевые воды, а также талые снеговые и ледниковые воды частично стекают в виде поверхностного (склонового и речного) стока, а частично расходуются на испарение и инфильтрацию.
Потери атмосферных вод на испарение признаются для данного речного бассейна безвозвратными, так как считается, что они уносятся за пределы бассейна воздушными потоками. Воды, поступившие в грунт в результате инфильтрации, считаются «потерями» лишь для данного участка водосбора и для конкретного дождя или периода снеготаяния. Они затем поступят в речное русло в процессе питания реки подземными водами.
Испарение с водной поверхности по своей величине приближается к испаряемости z0, т. е. максимально возможному при данных климатических условиях испарению, зависящему от радиационного баланса. Испарение с водной поверхности тем больше, чем меньше влажность воздуха (и больше дефицит влажности) и больше скорость ветра.
Величина годового испарения с водной поверхности для территории бывшего СССР зависит от природной зоны и в среднем равна: в тундре 200—350 мм, в лесной зоне 350—650, в степной зоне 650—1000, в полупустыне и пустыне 1000—1800 мм. Эти величины и составляют потери речного стока на испарение с поверхности водотоков (рек и каналов) и водоемов (озер и водохранилищ).
Испарение с водной поверхности в конкретных условиях может быть определено с помощью метода водного баланса с учетом величины снижения в результате испарения уровня воды в естественном водоеме или искусственном испарителе (см. разд. 2.2), с помощью метода теплового баланса путем расчета теплоты, затраченной на испарение воды (см. разд. 2.4), с помощью эмпирических формул. Среди последних широко используется формула Б. Д. Зай- кова:
Z = 0,14w(eo- е20о)(1 +0,72Ж200), (6.13)
где z — испарение, мм; е0 — среднее значение максимальной упругости водяного пара, вычисленное по температуре поверхности воды в водоеме, гПа; еш — средняя упругость водяного пара (абсолютная влажность воздуха) на высоте 200 см над водоемом, гПа; W200 — средняя скорость ветра на высоте 200 см над водоемом, м/с; п — число суток в расчетном интервале времени. В формуле (6.13) разность упругостей водяного пара е0 - еш может быть заменена величиной, пропорциональной дефициту влажности воздуха cDm).
Испарение с поверхности снега и льда зависит от тех же факторов, что и испарение с водной поверхности, но вследствие низкой температуры испаряющей поверхности значительно менее интенсивно. Оно составляет за зиму всего 20—30 мм, т. е. в десятки раз меньше испарения с поверхности воды.
Для измерения испарения с поверхности снега применяют специальные испарители, при этом используется весовой метод. На практике же обычно применяют эмпирическую зависимость, аналогичную формуле (6.13).
Испарение с поверхности почвы, не покрытой растительностью, определяется метеорологическими условиями и интенсивностью поступления воды к поверхности почвы из более глубоких слоев грунта. При этом испарение осуществляется не только непосредственно с поверхности почвы, но и с частиц ниже поверхности почвы и с «капиллярной каймы». Испарение с поверхности почвы обычно тем больше, чем больше влажность почвы, дефицит влажности воздуха и скорость ветра. Оно возрастает после дождей и при повышении уровня грунтовых вод.
Потери воды на испарение с поверхности почвы могут быть определены с помощью почвенного испарителя. Объем испарившейся с почвы воды рассчитывают по изменению массы почвенного монолита, помещенного в испаритель.
Физиологическое испарение растительным покровом (транспирация) включает три стадии: поглощение корневой системой растений почвенной влаги, подъем воды по стеблям, испарение с поверхности листьев. С увеличением глубины корневой системы растений и увеличением размеров листьев и густоты лиственного покрова транспирация увеличивается.
Интенсивность транспирации зависит и от типа растительности. Разные растения расходуют различные объемы воды на испарение. У них различно и отношение массы испаряемой ими воды к массе прироста сухого вещества, называемое транспирационным коэффициентом. Этот коэффициент характеризует так называемое продуктивное испарение. Он наибольший у риса, наименьший — у хвойных деревьев.
За вегетационный период растения могут испарять значительные объемы воды. Так, годовой слой испарения для пшеницы составляет 250—300 мм, березы — 150—200, хвойных деревьев — 150—300 мм.
Величина транспирации может быть определена следующим образом с помощью почвенного испарителя. Измеряют отдельно суммарное испарение с поверхности почвы и растительности (в этом случае монолит почвы имеет живые растения) и испарение с поверхности почвы под растениями (в этом случае измеряют испарение с монолита почвы, над которым подвешены срезанные растения, чем достигается естественная затененность почвы). Разница в величинах испарения, определенного двумя описанными способами, даст величину транспирации.
Суммарное испарение складывается из испарения с поверхности почвы, транспирации и испарения с крон деревьев (последние два вида испарения часто учитывают совместно). Суммарное испарение играет наиболее важную роль в определении потерь стока в пределах речных бассейнов, и его расчету в гидрологии уделяют наибольшее внимание.
Для определения суммарного испарения используют две группы методов. В первой из них применяют зависимости среднего многолетнего годового суммарного испарения z от годовых осадков х и испаряемости z0- М. И. Будыко предложил максимально возможное испарение, т. е. испаряемость z0, выражать через среднее многолетнее годовое значение радиационного баланса R и удельную теплоту испарения 1ИСП. Уравнение Будыко связывает величину испарения с величинами осадков, радиационного баланса и теплотой испарения: z=/(x, R, Ьисп). Для разных географических пунктов такая связь получается разной в зависимости от величины R, определяемой в основном солнечной радиацией, изменяющейся с изменением широты места (см. рис. 3.1).
Вторая группа методов основана на использовании эмпирических связей, например средних годовых и месячных величин суммарного испарения с соответствующими значениями температуры и влажности воздуха (метод А. Р. Константинова).
На территории бывшего СССР суммарное испарение изменяется в зависимости от климатических условий местности (количества осадков и радиационного баланса). В среднем для различных природных зон характерны такие величины годового суммарного испарения: тундра и лесотундра — 100—300 мм, лесная зона — 300—500, лесостепь и степь — 300—500, полупустыня — 150—300 мм.
Чем суше климат, тем больше разница между испаряемостью, или предельно возможным испарением, и фактическим суммарным испарением. В тундре испарение приближается к испаряемости, в пустынях при крайне малых атмосферных осадках оно намного меньше испаряемости. В Сахаре, например, при испаряемости 2000— 2500 мм фактическое испарение менее 100 мм.
Инфильтрация в речных бассейнах зависит от поступления дождевых или талых вод и от фильтрационных свойств подстилающих Фунтов. Механизм инфильтрации был подробно описан в разделе 5.4. Роль инфильтрации в водном балансе участка речного бассейна была рассмотрена в разд. 5.5.1. В отдельные периоды на инфильтрацию может расходоваться значительно больше воды, чем на испарение. Интенсивность инфильтрации во многом зависит от состояния грунта. Она уменьшается с увеличением влажности грунта и при его промерзании.