
- •1. Статически неопределенные системы
- •2. Основные законы статики. Связи и реакции связи.
- •3. Статика. Основные положения.
- •4. Геометрические характеристики фигур. Статический момент. Центробежный момент инерции, полярный момент инерции (основные понятия).
- •Статика твердого тела.
- •6. Условия равновесия сил
- •7. Моменты инерции сложных фигур
- •8. Главные оси инерции и главный момент инерции
- •9. Основные геометрические характеристики сечений
- •66. Муфты
- •10. Основные виды сил, действующие на тело. Момент силы относительно центра. Свойства момента сил.
- •11. Равновесие твердого тела под действием пары сил. Теорема о параллельном переносе силы. Основная теорема статики.
- •12. Сложные силы. Системы сходящихся сил.
- •13. Динамика точки. Основные законы динамики. Прямая и обратная задача динамики.
- •14. Трение качения.
- •15. Трение скольжения.
- •16. Центр тяжести.
- •17. Скорость точки, способы задания скорости точки.
- •18. Кинематика (дать понятия механического движения, времени траектории точки, системы отчета). Способы задания точек.
- •19. Понятия о моменте пары сил
- •20. Раскрытие статической неопределимости.
- •21. Простейшие движения твердого тела (поступательное, вращательное, сложное движение).
- •22. Напряжения. Виды напряжения, виды деформации. Правила знаков. Примеры расчета плоского напряженного состояния.
- •25. Кручение. Правило знаков
- •26. Общие положение сопротивления материалов
- •27. Диагармма растежения для сложной деформации пластичных материалов.
- •23. Деформация при сложном напряженном состоянии.
- •28. Сравнительная характеристика свойств хрупких и пластичных материалов. Модуль юнга.
- •29. Определение максимальных нормальных и касательных напряжений.
- •30. Расчетное напряжение при различных теориях прочности.
- •31. Изгиб. Понятия и определения.
- •32. Чистый сдвиг.
- •33. Динамическое, циклическое нагружение, понятие предела выносливости.
- •34. Понятие усталости материалов, факторы, влияющие на устойчивость к усталостному разрушению.
- •35. Влияние концентрации напряжений на прочность при циклическом нагружении.
- •36. Коэффициент запаса.
- •37. Поперечный изгиб.
- •38. Коэффициент пуассона.
- •39. Закон гука.
- •40. Твердость
- •41. Толстостенные и тонкостенные сосуды, отличительные особенности расчета.
- •42. Механические передачи. Особенности и классификация передач.
- •43. Ременная передача. Усилия, действующие в ременных передачах.
- •44. Фланцевые соединения.
- •45. Опоры валов. Разновидность подшипников. Требования, предъявляемые к подшипникам.
- •46. Клиноременные перелачи. Дать понятие передаточного числа. Достоинство и недостатки передач.
- •47. Напряжения в ременной передаче. Расчет клиноременной передачи.
- •48. Зубчатые передачи и их классификация. Основные геометрические и кинематические характеристики зубчатых передач.
- •49, 53, 54. Сварные соединения, способы сварки. Расчет на прочность сварных соединений.
- •50. Силовой фактор. Основной метод оценки прочности надежности.
- •65. Соединение деталей посадкой с натягом.
- •51. Резьба, основные геометрические размеры. Условие прочности для резьбовых соединений.
- •52. Виды напряжений действующих на аппарат при его расчете на прочность. Записать уравнение лапласа. Какие аппараты считаются тонкостенными?
- •55. Понятие о виброустойчивости перемешивающих устройств. Основы расчета на виброустойчивость.
- •56. Клиновые ремни, конструкция, размеры и порядок расчета передачи.
- •57. Зубчатые передачи, классификация передач.
- •58. Подшипники. Виды подшипников.
- •59. Классификация подшипников.
- •61. Испытание химической аппаратуры.
- •62. Внецентренное растяжение и сжатие.
- •63. Ядро сечения.
- •64. Шпоночные и зубчатые (шлицевые) соединения.
29. Определение максимальных нормальных и касательных напряжений.
Напряжение — это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Механическое напряжение в точке тела измеряется отношением упругой силы, возникающей в теле при деформации, к площади малого элемента сечения, перпендикулярного к этой силе. Q=F/S, где Q - механическое напряжение, F - упругая сила, возникшая в теле при деформации, S - площадь. Различают две составляющие вектора механического напряжения. Нормальное механическое напряжение — приложено на единичную площадку сечения образца, по нормали к сечению. Касательное механическое напряжение — приложено на единичную площадку сечения образца, в плоскости сечения.
30. Расчетное напряжение при различных теориях прочности.
Теории прочности
В общем случае опасное напряженное состояние элемента конструкции зависит от соотношения между тремя главными напряжениями (s1,s2,s3). Т.е., строго говоря, для каждого соотношения нужно экспериментально определять величину предельного напряжения, что нереально. Поэтому были приняты такие методы расчета прочности, которые позволяли бы оценить степень опасности любого напряженного состояния по напряжению растяжения — сжатия. Они называются теориями прочности (теории предельных напряженных состояний).
1-ая теория прочности (теория наибольших нормальных напряжений): причиной наступления предельного напряженного состояния являются наибольшие нормальные напряжения. smax=s1£ [s]. Главный недостаток: не учитываются два других главных напряжения. Подтверждается опытом только при растяжении весьма хрупких материалов (стекло, гипс). В настоящее время практически не применяется.
2-ая теория прочности (теория наибольших относительных деформаций): причиной наступления предельного напряженного состояния являются наибольшие удлинения.
emax= e1£ [e]. Учитывая, что e1=m — коэффициент Пуассона, получаем условие прочности sэквII=s1-m(s2+s3)£ [s]. sэкв — эквивалентное (расчетное) напряжение. В настоящее время теория используется редко, только для хрупких материалов (бетон, камень).
3-я теория прочности (теория наибольших касательных напряжений): причиной наступления предельного напряженного состояния являются наибольшие касательные напряжения tmax£ [t], условие прочности: sэквIII=s1-s3£ [s]. Основной недостаток — не учитывает влияние s2. При плоском напряженном состоянии: sэквIII=£ [s]. При sy=0 получаем Широко используется для пластичных материалов.
4-я теория прочности (энергетическая теория): причиной наступления предельного напряженного состояния являются величина удельной потенциальной энергии изменения формы uф£ [uф]. Учитывает все три главных напряжения. При плоском напряженном состоянии (sy=0) широко используется для пластичных материалов.
Теория прочности Мора. Получена на основе кругов напряжений Мора. Используется при расчетах хрупких материалов, у которых допускаемые напряжения на растяжение [sp] и сжатие [sс] не одинаковы (чугун).
Для пластичных материалов [sp]=[sс] теория Мора превращается в 3-ю теорию.
Круг Мора (круг напряжений). Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Откладываем от оси s из центра С луч под углом 2a (a>0, то против часовой стрелки), находим точку D, координаты которой: sa, ta. Можно графически решать как прямую, так и обратную задачи.