
- •1. Теплота и работа. Первое начало термодинамики.
- •2. Первое начало термодинамики при изохорическом, изобарическом и изотермическом процессах.
- •3. Теплоёмкость тела и вещества.
- •4. Адиабатический процесс. Уравнение Пуассона.
- •5. Политропические процессы.
- •6. Второе начало термодинамики. Обратимые и необратимые термодинамические процессы.
- •7. Круговой процесс. Тепловые и холодильные машины.
- •8. Идеальная тепловая машина Карно и её кпд.
- •9.Понятие об энтропии. Энтропия идеального газа. Статистическое истолкование второго начала термодинамики. Теорема Нернста.
- •10. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.
- •11. Экспериментальные изотермы реального газа. Опыт Эндрюса.
- •1 2. Понятие фазовых переходов. Критические параметры и их связь с поправками Ван-дер-Ваальса.
- •13. Внутренняя энергия реального газа.
- •14. Эффект Джоуля-Томпсона.
- •15. Электрический заряд. Свойства электрического заряда. Закон сохранения электрического заряда. Закон Кулона.
- •16. Электростатическое поле. Напряженность электростатического поля. Силовые линии. Принцип суперпозиции электростатических полей.
- •17. Поток вектора напряженности электростатического поля. Теорема Гаусса для электростатического поля в вакууме в интегральной и дифференциальной формах.
- •18. Работа по перемещению электрического заряда в электростатическом поле.
- •19. Теорема о циркуляции вектора напряженности электростатического поля в интегральной и дифференциальной формах.
- •20. Потенциал. Разность потенциалов. Принцип суперпозиции для электростатических потенциалов.
- •22. Электрический диполь. Электрический момент диполя. Напряженность и потенциал поля диполя.
- •23. Диполь во внешних однородном и неоднородном электростатических полях. Энергия диполя во внешнем электростатическом поле.
- •26. Вектор поляризации. Диэлектрическая восприимчивость полярных и неполярных диэлектриков.
- •27. Теорема Гаусса для электростатического поля в диэлектрике. Вектор электрического смещения.
- •28. Диэлектрическая проницаемость среды. Условия на границе раздела двух диэлектрических сред.
- •29. Сегнетоэлектрики. Диэлектрический гистерезис. Температура Кюри.
- •30. Электрическое поле внутри проводника и вблизи его поверхности. Электростатическая защита.
- •31. Электроемкость уединенного проводника и конденсатора. Электроемкость уединенного проводящего шара.
- •32. Конденсаторы (плоский, сферический, цилиндрический) и их соединения.
- •33. Энергия системы зарядов, проводника и конденсатора. Объемная плотность энергии электрического поля.
- •34. Условия существования и характеристики постоянного электрического тока.
- •35. Законы Ома в интегральной и дифференциальной формах.
- •36. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •37. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции.
- •38. Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа.
- •39. Расчет магнитных полей прямого проводника с током бесконечной и конечной длины.
- •40. Магнитное поле движущегося электрического заряда.
- •41. Циркуляция вектора магнитной индукции. Теорема и циркуляции вектора магнитной индукции в вакууме в интегральной и дифференциальной форме.
- •42. Магнитное поле тороида и соленоида.
- •43. Магнитный поток. Теорема Гаусса для магнитного поля в интегральной и дифференциальной формах.
- •44. Сила Ампера. Взаимодействие параллельных проводников с током.
- •45. Магнитный момент контура с током. Механический момент, действующий на контур с током в однородном магнитном поле.
- •46. Работа перемещения проводника и контура с током в магнитном поле.
- •47. Сила Лоренца. Масс-спектрометрия.
- •48. Эффект Холла.
- •49. Опыты Фарадея. Закон электромагнитной индукции. Вихревое электрическое поле. Токи Фуко.
- •50. Явление самоиндукции. Индуктивность.
- •51. Энергия контура с током. Энергия и объёмная плотность энергии магнитного поля.
- •52. Атом в магнитном поле. Магнитные моменты электронов и атомов. Орбитальный и спиновой магнитные моменты.
- •53. Намагниченность. Микротоки и макротоки. Магнитная восприимчивость и магнитная проницаемость среды.
- •54. Типы магнетиков. Магнитная восприимчивость диамагнетиков и парамагнетиков.
- •55. Элементарная теория диа- и парамагнетизма.
- •56. Ферромагнетики. Магнитный гистерезис. Точка Кюри.
- •57. Вихревое электрическое поле. Ток смещения. Первое и второе уравнения Максвелла в интегральной форме.
- •58. Полная система уравнений Максвелла для электромагнитного поля в интегральной и дифференциальной формах. Материальные уравнения. Граничные условия.
- •59. Электромагнитные волны. Волновое уравнение. Основные свойства электромагнитной волны.
- •60. Энергия электромагнитной волны. Вектор Умова — Пойнтинга.
- •61. Интенсивность света при суперпозиции двух монохроматических волн. Интерференция света.
- •62. Время и длина когерентности. Способы получения когерентных волн.
- •6 3. Интерференция света на тонких пленках. Интерференционные приборы.
- •64. Явление дифракции света и условия её наблюдения. Принцип Гюйгенса-Френеля.
- •65. Метод зон Френеля.
- •66. Дифракция Френеля на круглом отверстии и диске.
- •67. Дифракция Фраунгофера на одной щели и на дифракционной решетке.
- •68. Дифракция рентгеновских лучей на кристаллической решетке.
- •69. Спектральные приборы. Разрешающая способность оптических приборов.
- •70. Естественный и поляризованный свет. Поляризация света при отражении и преломлении. Закон Брюстера.
- •71. Двойное лучепреломление. Поляризаторы. Закон Малюса.
48. Эффект Холла.
Пусть
по проводнику прямоугольного поперечного
сечения (b
– ширина, а
– толщина образца) течет постоянный
электрический ток, I –
сила тока. Если образец поместить в
однородное магнитное поле, перпендикулярное
двум его граням (на рис. 28 это передняя
и задняя грани), то между двумя другими
гранями возникает разность потенциалов.
Это явление было обнаружено Холлом и
называется эффектом Холла. Разность
потенциалов между гранями называется
эдс Холла
.Эффект
Холла объясняется следующим образом.
В отсутствие магнитного поля в проводнике
существует лишь продольное электрическое
поле
,
обусловливающее ток. Эквипотенциальные
поверхности этого поля перпендикулярны
вектору
.
Разность потенциалов между симметрично
расположенными точками на верхней и
нижней гранях равна нулю.
В
Рис. 28
a
случае металлической пластинки носителями тока являются электроны (рис. 28). При включении магнитного поля на каждый носитель тока действует сила Лоренца

В
результате действия этой силы носители
тока смещаются в поперечном направлении.
На одной грани пластинки образуется
избыток отрицательных зарядов, а на
другой соответственно избыток
положительных.Таким образом, появляется
дополнительное поперечное электрическое
поле, напряженность
которого в итоге достигает такого
значения, что электрическая сила, равная
,
уравновешивает силу Лоренца
.
В результате устанавливается равновесие,
при котором
.(2.8)Отсюда
,(2.9)где
– эдс Холла.Сила тока I
связана со скоростью упорядоченного
движения электронов соотношением
[5]:
(2.10)где
S
– площадь прямоугольного поперечного
сечения образца шириной b
и
толщиной а;
j
– плотность тока; n
– концентрация носителей тока.Таким
образом, из (2.9) и (2.10) получаем значение
эдс Холла
.(2.11)В
заключение заметим, что эффект Холла
дает достаточно простой способ
экспериментального определения
концентрации носителей тока, а в случае
полупроводников – типа их проводимости
(по знаку эдс Холла). Если же концентрация
носителей заряда известна, эффект Холла
может быть использован для измерения
магнитной индукции (датчики Холла).
49. Опыты Фарадея. Закон электромагнитной индукции. Вихревое электрическое поле. Токи Фуко.
Если подносить постоянный магнит к катушке или наоборот, то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток, но лучше всего этот эффект проявляется, если две катушки соединить сердечником. По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток - электромагнитная индукция, а ток – индукционный. Явление не зависит от способа изменения потока вектора магнитной индукции. Движущиеся заряды (ток) создают магнитное поле, а движущееся магнитное поле создает (вихревое) электрическое поле и собственно индукционный ток. Для каждого конкретного случая Фарадей указывал направление индукционного тока. В 1833 г. Э.Х. Ленц установил общее правило нахождения направления тока: индукционный ток всегда направлен так, что магнитное поле этого тока препятствует изменению магнитного потока, вызывающего индукционный ток - правило Ленца. Заполнение всего пространства однородным магнетиком приводит, при прочих равных условиях, к увеличению индукции в µ раз. Этот факт подтверждает то, что индукционный ток обусловлен изменением потока вектора магнитной индукции, а не потока вектора напряженности . Закон электромагнитной индукции Фарадея является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов - Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур. В связанных контурах для передачи энергии переменного электрического тока из одного участка цепи в другой, часто используются магнитопроводящие среды. При подаче переменного напряжения (тока) на первый 1 соленоид со второго 2 можно снять переменное напряжение (ток) противоположного направления (закон Фарадея-Ленца) Так как магнитное поле замкнутое, то сердечники делаются сплошными, чтобы избежать потери магнитного поля. Тогда сам сердечник создает замкнутый контур, по которому может протекать электрический ток. Если сопротивление сердечника мало, то по закону Джоуля-Ленца количество теплоты, выделившейся на этом сердечнике, будет велико. То есть Q=U2t/R . Эта теплота отбирается от энергии переменного электрического тока, подаваемого на соленоид. Для того, чтобы избежать паразитных тепловых потерь, магнитнопроводящие сердечники делаются из специального металла, обладающего большим сопротивлением (углеродистая сталь - пермаллой, ферритовые сплавы). Если в связанных между собой механических частях какой- либо установки присутствуют электрические цепи с переменным током, то для предотвращения перемещения одной механической части относительно другой( когда их невозможно закрепить жестко) подвижные части делают в виде электрической цепи. ЭДС препятствует изменению магнитного поля, вызываемого движением. Возникающая ЭДС создает собственное магнитное поле, препятствующее движению механической детали. Таким образом, её движение ограничено. Это явление называют током Фуко.