Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика1.docx
Скачиваний:
31
Добавлен:
21.04.2019
Размер:
1.65 Mб
Скачать

60. Энергия электромагнитной волны. Вектор Умова — Пойнтинга.

Электромагнитные волны могут производить различные действия: нагревание тел при поглощении света, вырывание электронов с поверхности металла под действием света (фотоэффект). Это свидетельствует о том, что электромагнитные волны переносят энергию. Эта энергия заключена в распространяющихся в пространстве электрическом и магнитном полях. В курсе электричества и магнетизма было показано, что объемная плотность энергии электрического поля равна а магнитного поля – где ε и μ – электрическая и магнитная постоянные. Таким образом, полная плотность энергии электромагнитной волны равна Так как модули вектора напряженности электрического и индукции магнитного поля в электромагнитной волне связаны соотношением E=cB, то полную энергию можно выразить только через напряженность электрического поля или индукцию магнитного поля: бъемная плотность энергии складывается из двух равных по величине вкладов, соответствующих плотностям энергии электрического и магнитного полей. Это обусловлено тем, что в электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Плотность энергии электромагнитного поля можно представить в виде: Если выделить площадку с площадью s, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку пройдет энергия ∆W , равная где c– скорость электромагнитной волны в вакууме. Плотностью потока энергии называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади, перпендикулярной к направлению распространения волны:

Вектор Умова-Пойнтинга S= [ExH] - вектор, направление которого совпадает с направлением распространения энергии в электромагнитной волне, а модуль |S| равен потоку энергии.

61. Интенсивность света при суперпозиции двух монохроматических волн. Интерференция света.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление можно наблюдать при наложении двух или нескольких световых пучков. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, a в минимумах – меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. ростое качественное объяснение наблюдаемым при интерференции явлениям можно дать на основе волновых представлений. Действительно, согласно принципу суперпозиции, полное световое поле, возникающее при наложении волн, равно их сумме. Результирующее поле существенно зависит от фазовых соотношений, которые оказываются различными в различных точках пространства. В идеальном случае монохроматических источников при наложении двух пучков света с интенсивностями I1 и I2 распределение интенсивности в интерференционной картине описывается формулой: где ∆=r2-r1 – разность хода интерферирующих волн, - волновое число.

- Интерференция волн от двух точечных монохроматических источников. Интерференционные полосы могут иметь, например, вид семейства концентрических колец или гипербол. Наиболее простой вид имеет интерференционная картина, полученная при наложении двух плоских монохроматических волн, когда источники S2 и S1 находятся на достаточном удалении от экрана. В этом случае интерференционная картина имеет вид чередующихся темных и светлых прямолинейных полос (интерференционные максимумы и минимумы), расположенных на одинаковом расстоянии друг от друга.

- Связь между углом схождения лучей и шириной интерференционных полос l. При симметричном расположении экрана по отношению к лучам 1 и 2 ширина интерференционных полос выражается соотношением: