
- •Теоретические основы электротехники (Теория электрических цепей)
- •Лекция n 1 Элементы электрических цепей
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •Схемы замещения источников электрической энергии
- •Л екция n 2 Топология электрической цепи
- •Топологические матрицы
- •Первый закон Кирхгофа
- •Лекция n 3 Представление синусоидальных величин с помощью векторов и комплексных чисел
- •Синусоидально изменяющийся ток
- •Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •Векторное изображение синусоидально изменяющихся величин
- •Представление синусоидальных эдс, напряжений и токов комплексными числами
- •Действующее значение синусоидальных эдс, напряжений и токов
- •Лекция n 4 Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них
- •1 . Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •5. Последовательное соединение резистивного и емкостного элементов
- •6. Параллельное соединение резистивного и емкостного элементов
- •7. Параллельное соединение резистивного и индуктивного элементов
- •Лекция n 5 Закон Ома для участка цепи с источником эдс
- •Основы символического метода расчета цепей синусоидального тока
- •Специальные методы расчета
- •Метод узловых потенциалов
- •Лекция n 6 Методы расчета, основанные на свойствах линейных цепей
- •Метод наложения
- •Принцип взаимности
- •Л инейные соотношения в линейных электрических цепях
- •Принцип компенсации
- •Л екция n 7 Основы матричных методов расчета электрических цепей
- •Метод контурных токов в матричной форме
- •Метод узловых потенциалов в матричной форме
- •Лекция n 8 Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •Полная мощность
- •К омплексная мощность
- •Баланс мощностей
- •Лекция n 9 в екторные и топографические диаграммы
- •Потенциальная диаграмма
- •Преобразование линейных электрических схем
- •1, Преобразование последовательно соединенных элементов
- •2 Преобразование параллельно соединенных ветвей
- •3 . Взаимные преобразования “треугольник-звезда”
- •Лекция n 10 Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •Лекция n 11 а нализ цепей с индуктивно связанными элементами
- •Воздушный (линейный) трансформатор
- •Лекция n 12 Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией
- •Решение
- •Составление матричных соотношений при наличии ветвей с идеальными источниками
- •Лекция n 13 Метод эквивалентного генератора
- •Теорема вариаций
- •Лекция n 14 Трехфазные электрические цепи
- •Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •Лекция n15 Расчет трехфазных цепей
- •Расчет симметричных режимов работы трехфазных систем
- •Расчет несимметричных режимов работы трехфазных систем
- •Лекция n 16 Применение векторных диаграмм для анализа несимметричных режимов
- •Мощность в трехфазных цепях
- •Измерение мощности в трехфазных цепях
- •Лекция n 17 Метод симметричных составляющих
- •Свойства симметричных составляющих токов и напряжений различных последовательностей
- •Сопротивления симметричной трехфазной цепи для токов различных последовательностей
- •Применение метода симметричных составляющих для симметричных цепей
- •Лекция n 18 Теорема об активном двухполюснике для симметричных составляющих
- •Выражение мощности через симметричные составляющие
- •Лекция n 19 в ращающееся магнитное поле
- •Магнитное поле катушки с синусоидальным током
- •Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Магнитное поле в электрической машине
- •Лекция n 20 Переходные процессы в линейных электрических цепях с сосредоточенными параметрами
- •Классический метод расчета
- •Корни характеристического уравнения. Постоянная времени
- •Лекция n 21 с пособы составления характеристического уравнения
- •Общая методика расчета переходных процессов классическим методом
- •Примеры расчета переходных процессов классическим методом
- •Лекция n 22 Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов
- •Переходные процессы при подключении последовательной r-l-c-цепи к источнику напряжения
- •Лекция n 23 Операторный метод расчета переходных процессов
- •Некоторые свойства изображений
- •Изображения производной и интеграла
- •Закон Ома в операторной форме
- •Законы Кирхгофа в операторной форме
- •Переход от изображений к оригиналам
- •Лекция n 24 н екоторые важные замечания к формуле разложения
- •Последовательность расчета переходных процессов операторным методом
- •Формулы включения
- •Сведение расчета переходного процесса к расчету с нулевыми начальными условиями
- •Переходная проводимость
- •Переходная функция по напряжению
- •Лекция n 25 Расчет переходных процессов с использованием интеграла Дюамеля
- •Последовательность расчета с использованием интеграла Дюамеля
- •Метод переменных состояния
- •Методика составления уравнений состояния
- •Лекция n 26 Линейные электрические цепи при несинусоидальных периодических токах
- •Характеристики несинусоидальных величин
- •Разложение периодических несинусоидальных кривых в ряд Фурье
- •Свойства периодических кривых, обладающих симметрией
- •Действующее значение периодической несинусоидальной переменной
- •Мощность в цепях периодического несинусоидального тока
- •Методика расчета линейных цепей при периодических
- •Лекция n 27 Резонансные явления в цепях несинусоидального тока
- •Особенности протекания несинусоидальных токов через пассивные элементы цепи
- •Высшие гармоники в трехфазных цепях
- •Лекция n 28 Пассивные четырехполюсники
- •Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника
- •Лекция n 29 Электрические фильтры
- •Лекция n 30 Нелинейные цепи
- •Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •Методы расчета нелинейных электрических цепей постоянного тока
- •Графические методы расчета
- •Метод двух узлов
- •Лекция n 31 Расчет нелинейных цепей методом эквивалентного генератора
- •Аналитические методы расчета
- •Итерационные методы расчета
- •Лекция n 32 Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей
- •Характеристики ферромагнитных материалов
- •Магнитомягкие и магнитотвердые материалы
- •Статическая и дифференциальная магнитные проницаемости
- •Основные законы магнитных цепей
- •Лекция n 33 Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Лекция n 34 Нелинейные цепи переменного тока в стационарных режимах Особенности нелинейных цепей при переменных токах
- •Основные типы характеристик нелинейных элементов в цепях переменного тока
- •Графические методы расчета
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •Лекция n 35 Графический метод с использованием характеристик по первым гармоникам
- •Графический метод с использованием характеристик для действующих значений (метод эквивалентных синусоид)
- •Феррорезонансные явления
- •Аналитические методы расчета
- •Метод аналитической аппроксимации
- •Лекция n 36 Метод кусочно-линейной аппроксимации
- •Метод гармонического баланса
- •Лекция n 37 Метод эквивалентных синусоид (метод р асчета по действующим значениям)
- •Катушка с ферромагнитным сердечником
- •Трансформатор с ферромагнитным сердечником
- •Лекция n 38 Переходные процессы в нелинейных цепях Особенности расчета переходных процессов в нелинейных цепях
- •Аналитические методы расчета
- •Метод условной линеаризации
- •Метод аналитической аппроксимации
- •Метод кусочно–линейной аппроксимации
- •Лекция n 39 Графические методы анализа переходных процессов в нелинейных цепях
- •1. Метод графического интегрирования
- •2. Метод изоклин
- •3. Метод фазовой плоскости
- •Численные методы расчета переходных процессов
- •Метод переменных состояния
- •Методика составления уравнений состояния на основе принципа наложения
- •Метод дискретных моделей
Графические методы расчета
Графические методы расчета позволяют проводить анализ нелинейных цепей переменного тока для частных значений параметров с использованием характеристик нелинейных элементов для мгновенных значений, по первым гармоникам и действующим значениям (см. табл. 1).
Графический метод с использованием характеристик для мгновенных значений
В общем случае методика анализа нелинейной цепи данным методом включает в себя следующие этапы:
-исходя
из физических соображений находят (если
он не задан) закон изменения одной из
величин, определяющих характеристику
нелинейного
элемента;
-по
нелинейной характеристике
для
известного закона изменения переменной
путем
графических построений определяют
кривую
(или
наоборот);
-с использованием полученной зависимости проводят анализ остальной (линейной) части цепи.
В
качестве примера построим при
синусоидальной ЭДС
кривую
тока в цепи на рис. 3, ВАХ
диода
в которой представлена на рис. 4.
|
|
|
Рис.4 |
Решение
1.
Строим результирующую ВАХ
цепи
(см. рис. 4) согласно соотношению
2.
Находя для различных значений
с использованием полученной кривой
соответствующие им значения тока, строим
по точкам (см. рис. 5) кривую искомой
зависимости
.
К
полученному результату необходимо
сделать следующий комментарий.
Использование при анализе подобных
цепей ВАХ идеального вентиля (обратный
ток отсутствует, в проводящем направлении
падение напряжения на диоде равно нулю)
корректно п
ри
достаточно больших значениях амплитуд
приложенного к диоду напряжения,
определяющих значительное превышение
током, протекающим через вентиль в
прямом направлении, его обратного тока,
вследствие чего последним можно
пренебречь. При снижении величин
напряжения, когда эти токи становятся
сопоставимыми по величине, следует
использовать ВАХ реального
диода,представленную на рис. 4 и учитывающую
наличие обратного тока.
Важнейшим
элементом в цепях переменного тока
является катушка с ферромагнитным
сердечником. В общем случае кривая
зависимости
имеет
вид гистерезисной петли, но, поскольку
в устройствах, работающих при переменном
напряжении, используются магнитные
материалы с узкой петлей гистерезиса,
в большинстве практических случаев
допустимо при расчетах использовать
основную (или начальную) кривую
намагничивания.
Условное
изображение нелинейной катушки
индуктивности приведено на рис. 6. Здесь
–
основной поток, замыкающийся по
сердечнику,
- поток рассеяния, которому в первом
приближении можно поставить в соответствие
потокосцепление рассеяния
,
где индуктивность рассеяния
в
силу прохождения потоком
части
пути по воздуху.
Для схемы на рис. 6 справедливо уравнение
|
(1) |
где
.
В
общем случае в силу нелинейности
зависимости
определить
на основании (1) несинусоидальные
зависимости
и
достаточно
непросто. Вместе с тем для реальных
катушек индуктивности падением напряжения
и
ЭДС, обусловленной потоками рассеивания,
вследствие их малости, часто можно
пренебречь. При этом из (1) получаем
,
откуда
,
где
постоянная
интегрирования.
Так
как характеристика
катушки
(см. рис. 7) симметрична относительно
начала координат, а напряжение
симметрично
относительно оси абсцисс (оси времени),
то кривая
также
должна быть симметричной относительно
последней, откуда следует, что
.
Находя
для различных значений
с
использованием кривой
соответствующие
им значения тока, строим по точкам (см.
рис. 7) кривую зависимости
.
Анализ
полученного результата позволяет
сделать важный вывод: при синусоидальной
форме потока напряжение
на
катушке синусоидально, а протекающий
через нее ток имеет явно выраженную
несинусоидальную форму. Аналогично
можно показать, что при синусоидальном
токе поток, сцепленный с катушкой, и
напряжение на ней несинусоидальны.
Для среднего значения напряжения, наведенного потоком, можно записать
|
(2) |
Умножив (2) на коэффициент формы, получим выражение для действующего значения напряжения
.
В частности, если напряжение и поток синусоидальны, то
.
Соотношение
(2) является весьма важным: измеряя
среднее значение напряжения, наведенного
потоком, по (2) можно определить амплитуды
потока
и
индукции
при
любой форме нелинейности катушки.
Аналогично проводится построение кривой при синусоидальном потоке и задании зависимости в виде петли гистерезиса. При этом следует помнить, что перемещение рабочей точки по петле осуществляется против часовой стрелки (см. рис. 8).
К
полученному результату следует сделать
следующий важный комментарий. Разложение
построенной кривой
в
ряд Фурье показывает, что первая гармоника
тока (см. кривую
на
рис. 8) опережает по фазе потокосцепление
и, следовательно, отстает по фазе от
синусоидального напряжения на катушке
на угол, меньший 90°. Это указывает (
)
на потребление катушкой активной
мощности, затрачиваемой на перемагничивание
сердечника и определяемой площадью
петли гистерезиса.