
- •Теоретические основы электротехники (Теория электрических цепей)
- •Лекция n 1 Элементы электрических цепей
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •Схемы замещения источников электрической энергии
- •Л екция n 2 Топология электрической цепи
- •Топологические матрицы
- •Первый закон Кирхгофа
- •Лекция n 3 Представление синусоидальных величин с помощью векторов и комплексных чисел
- •Синусоидально изменяющийся ток
- •Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •Векторное изображение синусоидально изменяющихся величин
- •Представление синусоидальных эдс, напряжений и токов комплексными числами
- •Действующее значение синусоидальных эдс, напряжений и токов
- •Лекция n 4 Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них
- •1 . Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •5. Последовательное соединение резистивного и емкостного элементов
- •6. Параллельное соединение резистивного и емкостного элементов
- •7. Параллельное соединение резистивного и индуктивного элементов
- •Лекция n 5 Закон Ома для участка цепи с источником эдс
- •Основы символического метода расчета цепей синусоидального тока
- •Специальные методы расчета
- •Метод узловых потенциалов
- •Лекция n 6 Методы расчета, основанные на свойствах линейных цепей
- •Метод наложения
- •Принцип взаимности
- •Л инейные соотношения в линейных электрических цепях
- •Принцип компенсации
- •Л екция n 7 Основы матричных методов расчета электрических цепей
- •Метод контурных токов в матричной форме
- •Метод узловых потенциалов в матричной форме
- •Лекция n 8 Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •Полная мощность
- •К омплексная мощность
- •Баланс мощностей
- •Лекция n 9 в екторные и топографические диаграммы
- •Потенциальная диаграмма
- •Преобразование линейных электрических схем
- •1, Преобразование последовательно соединенных элементов
- •2 Преобразование параллельно соединенных ветвей
- •3 . Взаимные преобразования “треугольник-звезда”
- •Лекция n 10 Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •Лекция n 11 а нализ цепей с индуктивно связанными элементами
- •Воздушный (линейный) трансформатор
- •Лекция n 12 Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией
- •Решение
- •Составление матричных соотношений при наличии ветвей с идеальными источниками
- •Лекция n 13 Метод эквивалентного генератора
- •Теорема вариаций
- •Лекция n 14 Трехфазные электрические цепи
- •Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •Лекция n15 Расчет трехфазных цепей
- •Расчет симметричных режимов работы трехфазных систем
- •Расчет несимметричных режимов работы трехфазных систем
- •Лекция n 16 Применение векторных диаграмм для анализа несимметричных режимов
- •Мощность в трехфазных цепях
- •Измерение мощности в трехфазных цепях
- •Лекция n 17 Метод симметричных составляющих
- •Свойства симметричных составляющих токов и напряжений различных последовательностей
- •Сопротивления симметричной трехфазной цепи для токов различных последовательностей
- •Применение метода симметричных составляющих для симметричных цепей
- •Лекция n 18 Теорема об активном двухполюснике для симметричных составляющих
- •Выражение мощности через симметричные составляющие
- •Лекция n 19 в ращающееся магнитное поле
- •Магнитное поле катушки с синусоидальным током
- •Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Магнитное поле в электрической машине
- •Лекция n 20 Переходные процессы в линейных электрических цепях с сосредоточенными параметрами
- •Классический метод расчета
- •Корни характеристического уравнения. Постоянная времени
- •Лекция n 21 с пособы составления характеристического уравнения
- •Общая методика расчета переходных процессов классическим методом
- •Примеры расчета переходных процессов классическим методом
- •Лекция n 22 Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов
- •Переходные процессы при подключении последовательной r-l-c-цепи к источнику напряжения
- •Лекция n 23 Операторный метод расчета переходных процессов
- •Некоторые свойства изображений
- •Изображения производной и интеграла
- •Закон Ома в операторной форме
- •Законы Кирхгофа в операторной форме
- •Переход от изображений к оригиналам
- •Лекция n 24 н екоторые важные замечания к формуле разложения
- •Последовательность расчета переходных процессов операторным методом
- •Формулы включения
- •Сведение расчета переходного процесса к расчету с нулевыми начальными условиями
- •Переходная проводимость
- •Переходная функция по напряжению
- •Лекция n 25 Расчет переходных процессов с использованием интеграла Дюамеля
- •Последовательность расчета с использованием интеграла Дюамеля
- •Метод переменных состояния
- •Методика составления уравнений состояния
- •Лекция n 26 Линейные электрические цепи при несинусоидальных периодических токах
- •Характеристики несинусоидальных величин
- •Разложение периодических несинусоидальных кривых в ряд Фурье
- •Свойства периодических кривых, обладающих симметрией
- •Действующее значение периодической несинусоидальной переменной
- •Мощность в цепях периодического несинусоидального тока
- •Методика расчета линейных цепей при периодических
- •Лекция n 27 Резонансные явления в цепях несинусоидального тока
- •Особенности протекания несинусоидальных токов через пассивные элементы цепи
- •Высшие гармоники в трехфазных цепях
- •Лекция n 28 Пассивные четырехполюсники
- •Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника
- •Лекция n 29 Электрические фильтры
- •Лекция n 30 Нелинейные цепи
- •Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •Методы расчета нелинейных электрических цепей постоянного тока
- •Графические методы расчета
- •Метод двух узлов
- •Лекция n 31 Расчет нелинейных цепей методом эквивалентного генератора
- •Аналитические методы расчета
- •Итерационные методы расчета
- •Лекция n 32 Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей
- •Характеристики ферромагнитных материалов
- •Магнитомягкие и магнитотвердые материалы
- •Статическая и дифференциальная магнитные проницаемости
- •Основные законы магнитных цепей
- •Лекция n 33 Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Лекция n 34 Нелинейные цепи переменного тока в стационарных режимах Особенности нелинейных цепей при переменных токах
- •Основные типы характеристик нелинейных элементов в цепях переменного тока
- •Графические методы расчета
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •Лекция n 35 Графический метод с использованием характеристик по первым гармоникам
- •Графический метод с использованием характеристик для действующих значений (метод эквивалентных синусоид)
- •Феррорезонансные явления
- •Аналитические методы расчета
- •Метод аналитической аппроксимации
- •Лекция n 36 Метод кусочно-линейной аппроксимации
- •Метод гармонического баланса
- •Лекция n 37 Метод эквивалентных синусоид (метод р асчета по действующим значениям)
- •Катушка с ферромагнитным сердечником
- •Трансформатор с ферромагнитным сердечником
- •Лекция n 38 Переходные процессы в нелинейных цепях Особенности расчета переходных процессов в нелинейных цепях
- •Аналитические методы расчета
- •Метод условной линеаризации
- •Метод аналитической аппроксимации
- •Метод кусочно–линейной аппроксимации
- •Лекция n 39 Графические методы анализа переходных процессов в нелинейных цепях
- •1. Метод графического интегрирования
- •2. Метод изоклин
- •3. Метод фазовой плоскости
- •Численные методы расчета переходных процессов
- •Метод переменных состояния
- •Методика составления уравнений состояния на основе принципа наложения
- •Метод дискретных моделей
Схемы соединения трехфазных систем
Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 1200. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.
Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.
Соединение в звезду
На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.
Л
инейным
называется провод, соединяющий начала
фаз обмотки генератора и приемника.
Точка, в которой концы фаз соединяются
в общий узел, называется нейтральной
(на рис. 6 N и N’ – соответственно
нейтральные точки генератора и нагрузки).
Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.
Все
величины, относящиеся к фазам, носят
название фазных переменных, к линии
- линейных. Как видно из схемы на
рис. 6, при соединении в звезду линейные
токи
и
равны
соответствующим фазным токам. При
наличии нейтрального провода ток в
нейтральном проводе
.
Если система фазных токов симметрична,
то
.
Следовательно, если бы симметрия токов
была гарантирована, то нейтральный
провод был бы не нужен. Как будет показано
далее, нейтральный провод обеспечивает
поддержание симметрии напряжений на
нагрузке при несимметрии самой нагрузки.
Поскольку
напряжение на источнике противоположно
направлению его ЭДС, фазные напряжения
генератора (см. рис. 6) действуют от точек
А,В и С к нейтральной точке N;
-
фазные напряжения нагрузки.
Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать
|
(1) |
|
(2) |
|
(3) |
Отметим,
что всегда
-
как сумма напряжений по замкнутому
контуру.
На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при осно. вании, равными 300), в этом случае
|
(4) |
Обычно
при расчетах принимается
.
Тогда для случая прямого чередования
фаз
,
(при
обратном чередовании фаз фазовые
сдвиги у
и
меняются
местами). С учетом этого на основании
соотношений (1) …(3) могут быть определены
комплексы линейных напряжений. Однако
при симметрии напряжений эти величины
легко определяются непосредственно из
векторной диаграммы на рис. 7. Направляя
вещественную ось системы координат по
вектору
(его
начальная фаза равна нулю), отсчитываем
фазовые сдвиги линейных напряжений по
отношению к этой оси, а их модули
определяем в соответствии с (4). Так для
линейных напряжений
и
получаем:
;
.