
- •2) Геометрические векторы: основные понятия
- •3) Сложение векторов
- •Умножение на число
- •Свойства линейных операци
- •6) Линейные операции над векторами в координатной форме
- •Действия с векторами в координатной форме
- •Как найти угол между двумя векторами
- •Инструкция
- •14) Уравнение пучка прямых
- •§ 2. Канонические и параметрические уравнения прямой в пространстве
- •§3. Расстояние от точки до плоскости в пространстве
- •§4. Координаты точки, делящей отрезок в заданном соотношении
- •Свойства углов, связанных с окружностью
- •Длины и площади
- •Вписанные и описанные окружности о кружность и треугольник
- •Окружность и четырехугольники
- •23) Каноническое уравнение эллипса
- •25) Парабола
- •Виды матриц
- •Матрицы специального вида
- •2. Существует такое натуральное число r, удовлетворяющее неравенствам , что .
- •3. Если какой-либо диагональный элемент , то все элементы I-й строки и всех последующих строк равны нулю.
- •30) Обратная матрица
- •32) Система линейных уравнений, ее решение, различные формы записи системы линейных уравнений, определение однородной,неоднородной,совместной,несовместной,определенной и неопределенной систем.
- •Векторная форма записи
- •Матричная форма записи
- •33) Решение систем линейных уравнений
- •34) Описание метода
- •3 7)Решение систем линейных уравнений методом Гаусса
- •[Править]Условие совместности
- •Алгоритм Описание
- •39) Однородные системы линейных уравнений.
- •42) Линейно зависимые и линейно независимые системы векторов векторного пространства
- •43) Размерность и базис линейного пространства, координаты вектора
- •Линейная оболочка системы векторов. Подпространство. Базис подпространства
- •Определения
- •Изоморфизм
- •46) Собственные числа и собственные векторы
- •Основная терминология
- •Геометрическая модель
- •Действия над комплексными числами
- •50) Тригонометрическая и показательная формы
- •Определение
- •Связанные определения
- •Свойства
Основная терминология
Пусть оператор A действует из множества X в множество Y.
Оператор может быть не всюду определен на X; тогда говорят о его области определения
.
Для
результат применения оператора A к x обозначают A(x) или Ax.
Если X и Y — векторные пространства, то в множестве всех операторов из X в Y можно выделить класс линейных операторов.
Если X и Y — векторные топологические пространства, то в множестве операторов из X в Y естественно выделяется класс непрерывных операторов, а также класс линейныхограниченных операторов и класс линейных компактных операторов (называемые также вполне непрерывными).
49)Ко́мпле́ксные[1] чи́сла (устар. Мнимые
числа[2]),
— расширение множества вещественных
чисел,
обычно обозначается
.
Любое комплексное число может быть
представлено как формальная сумма x + iy,
где x и y —
вещественные числа, i — мнимая
единица[3].
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.
Алгебраическая форма
Запись
комплексного числа z в
виде x + iy,
,
называется алгебраической
формой комплексного
числа.
Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что i2 = − 1):
(
a + ib)
+ (c + id)
= (a + c)
+ i(b + d);
Геометрическая модель
Геометрическое представление комплексного числа
Рассмотрим
плоскость с прямоугольной
системой координат.
Каждому комплексному числу
сопоставим
точку плоскости с координатами {x,y} (а
также радиус-вектор,
соединяющий начало координат с этой
точкой). Такая плоскость называется комплексной.
Вещественные числа на ней занимают
горизонтальную ось, мнимая единица
изображается единицей на вертикальной
оси; по этой причине горизонтальная и
вертикальная оси называются
соответственно вещественной и мнимой осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.
В
этом наглядном представлении сумма
комплексных чисел соответствует векторной
сумме соответствующих
радиус-векторов. При перемножении
комплексных чисел их модули перемножаются,
а аргументы складываются. Если модуль
второго сомножителя равен 1, то умножение
на него геометрически означает поворот
радиус-вектора первого числа на угол,
равный аргументу второго числа. Этот
факт объясняет широкое использование
комплексного представления в теории
колебаний,
где вместо терминов «модуль» и «аргумент»
используются термины «амплитуда»
и «фаза».
Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Некоторые планиметрические утверждения (например, теорема Клиффорда), допускают только доказательство при помощи счёта в комплексных координатах.