Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фёдоров Н.Н. Теория механизмов и машин (2008).doc
Скачиваний:
51
Добавлен:
17.04.2019
Размер:
8.24 Mб
Скачать

2.6. Синтез механизмов планетарного типа

Задача синтеза заключается в подборе чисел зубьев колёс механизма, обеспечивающих заданное отношение угловых скоростей входа и выхода. Заданными величинами должны быть или передаточное отношение (в планетарном механизме), или угловые скорости (частоты вращения) – в дифференциальном механизме. Используя уравнения (а) и (б), подставляя в их левую часть заданные значения, получают величину . Так как при неподвижном водиле получается механизм с неподвижными осями колёс, то для этого механизма задача подбора чисел зубьев на данном этапе ничем не отличается от ранее изложенных методик. Особенностью синтеза является необходимость учёта условий соосности, соседства и сборки.

У с л о в и е с о о с н о с т и заключается в том, что в механизмах планетарного типа оба центральные колеса и водило должны иметь общую неподвижную ось. В схеме рис. 2.7 это условие даёт возможность записать такое равенство

.

Учитывая, что каждый радиус определяется формулой

,

можно заменить величины радиусов в приведённом выше выражении и после несложных преобразований записать

.

Таким образом, выбирая числа зубьев колёс, необходимо учитывать последнее соотношение.

У с л о в и е с о с е д с т в а заключается в необходимости такого подбора чисел зубьев, чтобы сателлиты, связанные с одним водилом, при их количестве больше двух, не задевали друг друга. В противном случае механизм не может быть собран. Для вывода соответствующей зависимости обратимся к рис. 2.12.

На рисунке показана центроидная окружность центрального колеса 1 радиуса , по которой перекатываются центроидные окружности сателлитов 2 радиусов . Показаны также окружности вершин сателлитов радиусов . Эти окружности по условию соседства не должны ни пересекаться, ни касаться друг друга. Сателлиты 2 находятся на угловом расстоянии γ (гамма) друг от друга. Так как сателлиты по окружности располагаются равномерно, то угол γ может быть определён из отношения , где K – количество сателлитов, присоединённых к одному водилу. Половина расстояния между центрами сателлитов составляет . Отрезок O1O2 представляет собой длину водила или межосевое расстояние центрального колеса 1 и сателлита 2: . Радиус окружности вершин . Условие соседства выполняется, если выполняется неравенство .

После выполнения несложных преобразований получаем окончательно

.

Если сателлит 2 представляет собой блок из двух колёс, то в это неравенство в качестве необходимо подставлять большее из них.

У с л о в и е с б о р к и заключается в возможности собираемости механизма, то есть установки сателлитов, если их количество больше одного. Ясно, что один сателлит устанавливается между центральными колёсами беспрепятственно (если сателлитов несколько, то – первый из них). Чтобы установить второй и другие сателлиты, необходимо, чтобы их зубья вступали в зацепление с зубьями центральных колёс, а не натыкались на них, иначе сборка невозможна. Для решения задачи обратимся к рис. 2.13, на котором показаны участок центрального колеса 3 с внутренними зубьями, центральное колесо 1 и два параллельно работающих сателлита 2 из нескольких, расположенных по всему пространству между центральными колёсами 1 и 3.

Обозначим количество сателлитов в механизме буквой K . Так как все колёса образуют одинаковые зацепления, то они имеют один модуль m и шаг . Все центроидные окружности, показанные на рисунке, предполагаются делительными. Длина дуги A1B1 окружности колеса 1 между точками касания этой окружности с окружностями сателлитов 2 составляет , то есть некоторое количество целых шагов и возможную часть последнего неполного шага. Если на этой дуге помещается только целое количество шагов, то . Точно так же можно записать и длину дуги A3B3 окружности колеса 3: . С другой стороны, ясно, что эти дуги, при условии равномерного расположения осей сателлитов по окружности, составляют длины на окружности колеса 1 и на окружности колеса 3. Приравнивая соответствующие выражения для колеса 1 и колеса 3, можно записать

и .

Сокращая оба выражения на p и складывая их левые и правые части, имеем

.

Левая часть полученного равенства является целым числом, поэтому правая часть должна быть также целым числом. В правой части , и K являются целыми числами, следовательно, доли шага и в сумме должны составить целое число, а именно – единицу. Так как сумма в квадратных скобках является целым числом, то её можно обозначить (от англ. integer – целое число), то есть , и окончательно записать

.

Выразив отсюда , запишем

,

что является математическим выражением условия сборки, то есть частное от деления суммы чисел зубьев центральных колёс на количество сателлитов механизма должно быть целым числом.

Необходимо иметь в виду, что данное условие пригодно только для механизмов с одинарным сателлитом или со сдвоенным, но при одном модуле обоих колёс сателлита и сопряжённых с ними колёс. Для получения математического выражения условий сборки других схем можно обратиться к литературе.

Подытоживая рассмотренные решения, запишем все математические условия, которые необходимо учитывать при синтезе зубчатых механизмов планетарного типа. Например, для схемы механизма (рис. 2.7) составляется следующая система уравнений с неравенством:

.

В заключение рассмотрим пример синтеза механизма планетарного типа, схема которого изображена на рис. 2.7. Решение приводится с привлечением компьютерного математического пакета MathCAD версии 2001i Professional (листинг 2.1). Вычислительная программа составлена в соответствии с методикой, описанной в инструкции к пакету. Так как системы уравнений решаются методом итераций, то необходимо в самом начале задать искомым переменным, в нашем случае z1, z2, z3 и K, некоторые начальные значения. Они приведены ниже подзаголовка «Начальные условия». Затем идёт блок Given, в котором приведены вышеперечисленные уравнения и неравенство, связывающие между собой числа зубьев колёс и условия, которым они должны удовлетворять в механизме. Решающий блок Find содержит перечень искомых параметров и, после знака равенства, в виде матрицы автоматически выводятся найденные значения этих параметров.

В связи с тем, что числа зубьев колёс и количество сателлитов могут быть только целыми, то полученные значения необходимо округлить до целых, то есть принять , , и Естественно, что при округлении чисел зубьев изменяется передаточное отношение, поэтому последним шагом расчёта является проверка его величины. Она показала, что результат округления не привёл к ошибке передаточного отношения.