Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 2.doc
Скачиваний:
18
Добавлен:
16.04.2019
Размер:
427.01 Кб
Скачать

42. Закон радиоактивного распада. Постоянная распада, среднее время жизни ядра, период полураспада, активность.

Радиоактивный распад – процесс превращения неустойчивых атомных ядер в ядра других элементов, который сопровождается испусканием частиц.

N=N0e-λt – закон радиоактивного распада, где N – число нераспавшихся ядер, N0 – число начальных ядер.

Физический смысл постоянной распада – вероятность распада ядра за единицу времени. Характерные времена жизни для радиоактивных ядер τ> 10-14 c. Времена жизни ядер, обусловленные испусканием нуклонов 10-23 с < <10-20 c. T1/2 – период полураспада – время, за которое распадается половина начального количества ядер. Активность радиоактивного источника – число распадов в единицу времени: A=λN.

43. Виды радиоактивного распада. Α – распад, схема распада, закономерности распада.

Радиоактивный распад – процесс превращения неустойчивых атомных ядер в ядра других элементов, который сопровождается испусканием частиц.

Виды радиоактивного распада:

1)α – распад – сопровождается испусканием атомов гелия.

2)β – распад – испускание электронов и позитронов.

3)γ – распад – испускание фотонов при переходах между состояниями ядер.

4)Спонтанное деление ядер.

5)Нуклонная радиоактивность.

α – распад: A2X→A-YZ-2Y+42He. Α-распад наблюдается у тяжёлых ядер. Спектр α – распада дискретный. Длина пробега α – частицы в воздухе: 3-7см; для плотных веществ: 10-5м. T1/2 10-7с ÷ 1010лет.

44. β – распад. Схемы β+, β- и К-захвата. Закономерности β – распада.

β – распад обусловлен слабым взаимодействием. Слабым оно является по отношению к сильным ядрам. В слабых взаимодействиях участвуют все частицы, кроме фотонов. Суть в вырождении новых частиц. T1/2 10-2с ÷ 1020лет. Свободный пробег нейтрона 1019км.

β – распад включает в себя 3 вида распада:

1)β- или электронный. Ядро испускает электроны. В общем случае:

A2X→AZ-1Y+0-1e+υe.

2)β+ или позитронный. Испускаются античастицы электрона – позитроны: 11p→10n+01e+υe – реакция превращения протона в нейтрон. Самостоятельно реакция не проходит. Общий вид реакции: AZX→AZ-1Y+01e+υe. Наблюдается у искусственных радиоактивных ядер.

3)Электронный захват. Происходит превращение ядра, захватывает K – оболочку и превращается в нейтрон: 11p+0-1e→10n+υe. Общий вид: AZX+01e→AZ-1Y+υe. В результате электрического захвата из ядер вылетает только одна частица. Сопровождается характерным рентгеновским излучением.

45. γ-распад. Закономерности γ-распада.

Это вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5×10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер, при ядерных реакциях, а также при отклонении энергичных заряженных частиц в магнитных и электрических полях. Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным).

Комптон-эффект — гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома.

Эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон.

Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра