- •Статистика
- •Часть I
- •1. Предмет и задачи статистики
- •1.1 Предмет статистики
- •1.2 Категории статистической науки
- •1.3 Задачи статистики
- •1.4 Организация статистики в Республике Беларусь
- •2.Статистическое наблюдение
- •2.1 Организационные формы наблюдения
- •2.2 Виды статистического наблюдения
- •2.3 Способы статистического наблюдения
- •2.4 Организация работы по статистическим наблюдениям
- •2.5 Ошибки статистического наблюдения
- •2.6 Контроль статистических данных
- •3 Сводка и группировка статистических материалов
- •3.1 Задачи сводки и ее основное содержание
- •3.2 Статистические группировки и их виды
- •3.2.1 Типологическая группировка
- •3.2.2 Структурная группировка
- •3.2.3 Аналитическая группировка
- •3.3 Вторичные группировки
- •3.4 Ряды распределения, их виды и графическое изображение
- •3.5 Статистические таблицы
- •3.6 Статистические графики
- •4 Обобщающие статистические показатели
- •4.1 Абсолютные величины, их виды, единицы измерения
- •4.2 Относительные величины, их виды и значения
- •4.3 Основные принципы построения относительных величин
- •4.4 Построение системы статистических показателей
- •5 Средние величины
- •5.1 Понятие средней величины. Виды средних величин
- •5.2 Средняя арифметическая, ее свойства и вычисление
- •5.3 Вычисление средней арифметической способом моментов
- •5.4 Средняя гармоническая, ее виды и вычисления
- •5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах
- •6 Показатели вариации
- •6.1 Характеристика показателей вариации
- •6.2 Основные свойства дисперсии и ее вычисление
- •6.3 Дисперсия альтернативного признака
- •6.4 Определение тесноты связи между факторами. Правило сложения дисперсий
- •7 Индексы
- •7.1 Понятие об индексах. Их классификация. Индексная символика
- •7.2 Принципы и методы построения общих индексов
- •7.3 Построение индексов качественных показателей в агрегатной форме
- •7.4 Построение агрегатных индексов, объемных показателей
- •7.5 Построение агрегатного индекса производительности труда
- •7.6 Индексы с постоянными и переменными весами
- •7.7 Преобразование агрегатных индексов в индексы средние из индивидуальных
- •7.8 Индексный метод анализа факторов динамики (система взаимосвязанных индексов)
- •7.9 Индексы постоянного, переменного состава и влияние структурных сдвигов
- •7.10 Построение территориальных индексов
- •8 Статистическое изучение динамики
- •8.1 Ряды динамики и их виды
- •8.2 Показатели анализа динамики
- •8.3 Темпы роста, их вычисление
- •8.4 Прирост и темп прироста
- •8.5 Вычисление средних темпов роста и прироста
- •8.6 Приемы анализа рядов динамики
- •8.7 Аналитическое выравнивание ряда динамики по прямой
- •При четном числе уровней динамического ряда
- •8.8 Приёмы анализа сезонных колебаний
- •9 Выборочное наблюдение
- •9.1 Общее понятие о выборочном методе и причины его использования
- •9.2 Способы отбора
- •9.2.1 Собственно случайная выборка
- •9.2.2 Механический отбор
- •9.2.3 Типический (районированный) отбор
- •9.2.4 Гнездовой (серийный) отбор
- •9.3 Понятие о моментном наблюдении и малой выборке
- •10 Статистическое изучение динамики
- •10.1 Виды связей
- •10.2 Измерение тесноты связи между атрибутивным признаками
- •10.2.1 Коэффициент взаимной сопряженности Чупрова и Пирсона
- •10.2.2 Коэффициенты ассоциации и контингенции
- •10.3 Измерение тесноты связи между количественными признаками
- •10.3. 1 Метод сравнения параллельных рядов
- •10.3.2 Коэффициент Фехнера
- •10.3.3 Коэффициент корреляции рангов
- •10.3.4 Метод аналитических группировок
- •10.4 Метод корреляционно-регрессионного анализа. Корреляционное отношение и коэффициент корреляции
- •10.5 Проверка значимости корреляционной связи с помощью дисперсионного анализа
- •10.6 Понятие о многофакторном корреляционно-регрессионном анализе
- •Литература
- •Содержание
- •Статистика
- •212027, Могилев, пр-т Шмидта,3.
- •212027, Могилев, пр-т Шмидта,3.
- •Выписка из протокола № 11
8.7 Аналитическое выравнивание ряда динамики по прямой
Использование методов этой группы позволяет преодолеть недостатки приемов механического сглаживания. Они дают возможность учитывать все уровни динамического ряда, моделировать динамические процессы, строить прогноз и интерполировать отдельные значения анализируемого показателя.
Основополагающей в теории аналитического выравнивания является идея о возможности геометрического представления зависимости уровней динамического ряда от фактора времени (t). Всегда можно найти плавную линию (прямую или кривую), которая бы проходила через центр распределения и минимизировала сумму квадратов отклонений от нее до каждой точки, представляющей отдельные фактические значения у. Чем лучше теоретическая кривая описывает распределение значений анализируемого показателя в динамике и меньше сумма квадратов отклонений (ошибка функции тренда), тем, следовательно, лучше сделан выбор теоретической функции и надежнее статистические выводы о закономерностях в динамике для у (рис. 8.1).
Объём
реализации
yt
t
(годы)
y=f(t)
Рис.8.1 – Динамика объемов реализации продукции предприятия
В общем виде модель зависимости значений показателя от фактора времени t имеет форму:
ŷt =f(t)+ε(t) − уравнение тренда,
где f(t) − некоторая неслучайная функция времени (тренд),
ε(t) − случайный компонент, т.е. ошибка модели тренда;
yt − фактические (эмпирические) значения признака
за период t,
ŷt − теоретические (выравненные) значения признака за этот же
период времени t.
Параметры модели для ŷt находят с использованием метода наименьших квадратов, т.е. при условии, что сумма квадратов ошибки модели (∑ε2) − минимальна, близка к нулю:
Рассмотрим аналитическое выравнивание по прямой. Уравнение прямой имеет вид
yt=a0+a1t,
где t – время,
a0, a1 – параметры.
Величина a0 характеризует среднее значение признака в динамическом ряду, , a1 – ежегодный прирост значений признака, обусловленный факторм времени.
Если а1>0, – имеется тенденция к росту, если а1<0, имеется тенденция к снижению.
Параметры a0 и a1 можно найти из следующей системы уравнений:
.
(8.1)
Поскольку t – время, можем перейти к условным годам, выбрав начало отсчета таким образом, чтобы сумма времени ∑t была равна 0.
При этом индексация временных периодов производится по следующему правилу:
а) если во временном ряду четное число лет, то обозначения t принимаются с разницей в одну единицу (таблица 8.3):
Таблица 8.3 – Выбор t-значений при четном числе лет во временном
Год |
1997 |
1998 |
1999 |
2000 |
2001 |
2002 |
2003 |
2004 |
Обозначение года (t) |
-7 |
-5 |
-3 |
-1 |
1 |
3 |
5 |
7 |
б) если в анализируемом периоде число лет нечетно, то в центре динамического ряда ставится ноль, а вправо и влево от него годы нумеруются по порядку (таблица 8.4):
Таблица8.4 – Выбор t-значений при нечетном числе лет во временном ряду
Год |
1998 |
1999 |
2000 |
2001 |
2002 |
2003 |
2004 |
Обозначение года (t) |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
