
- •Статистика
- •Часть I
- •1. Предмет и задачи статистики
- •1.1 Предмет статистики
- •1.2 Категории статистической науки
- •1.3 Задачи статистики
- •1.4 Организация статистики в Республике Беларусь
- •2.Статистическое наблюдение
- •2.1 Организационные формы наблюдения
- •2.2 Виды статистического наблюдения
- •2.3 Способы статистического наблюдения
- •2.4 Организация работы по статистическим наблюдениям
- •2.5 Ошибки статистического наблюдения
- •2.6 Контроль статистических данных
- •3 Сводка и группировка статистических материалов
- •3.1 Задачи сводки и ее основное содержание
- •3.2 Статистические группировки и их виды
- •3.2.1 Типологическая группировка
- •3.2.2 Структурная группировка
- •3.2.3 Аналитическая группировка
- •3.3 Вторичные группировки
- •3.4 Ряды распределения, их виды и графическое изображение
- •3.5 Статистические таблицы
- •3.6 Статистические графики
- •4 Обобщающие статистические показатели
- •4.1 Абсолютные величины, их виды, единицы измерения
- •4.2 Относительные величины, их виды и значения
- •4.3 Основные принципы построения относительных величин
- •4.4 Построение системы статистических показателей
- •5 Средние величины
- •5.1 Понятие средней величины. Виды средних величин
- •5.2 Средняя арифметическая, ее свойства и вычисление
- •5.3 Вычисление средней арифметической способом моментов
- •5.4 Средняя гармоническая, ее виды и вычисления
- •5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах
- •6 Показатели вариации
- •6.1 Характеристика показателей вариации
- •6.2 Основные свойства дисперсии и ее вычисление
- •6.3 Дисперсия альтернативного признака
- •6.4 Определение тесноты связи между факторами. Правило сложения дисперсий
- •7 Индексы
- •7.1 Понятие об индексах. Их классификация. Индексная символика
- •7.2 Принципы и методы построения общих индексов
- •7.3 Построение индексов качественных показателей в агрегатной форме
- •7.4 Построение агрегатных индексов, объемных показателей
- •7.5 Построение агрегатного индекса производительности труда
- •7.6 Индексы с постоянными и переменными весами
- •7.7 Преобразование агрегатных индексов в индексы средние из индивидуальных
- •7.8 Индексный метод анализа факторов динамики (система взаимосвязанных индексов)
- •7.9 Индексы постоянного, переменного состава и влияние структурных сдвигов
- •7.10 Построение территориальных индексов
- •8 Статистическое изучение динамики
- •8.1 Ряды динамики и их виды
- •8.2 Показатели анализа динамики
- •8.3 Темпы роста, их вычисление
- •8.4 Прирост и темп прироста
- •8.5 Вычисление средних темпов роста и прироста
- •8.6 Приемы анализа рядов динамики
- •8.7 Аналитическое выравнивание ряда динамики по прямой
- •При четном числе уровней динамического ряда
- •8.8 Приёмы анализа сезонных колебаний
- •9 Выборочное наблюдение
- •9.1 Общее понятие о выборочном методе и причины его использования
- •9.2 Способы отбора
- •9.2.1 Собственно случайная выборка
- •9.2.2 Механический отбор
- •9.2.3 Типический (районированный) отбор
- •9.2.4 Гнездовой (серийный) отбор
- •9.3 Понятие о моментном наблюдении и малой выборке
- •10 Статистическое изучение динамики
- •10.1 Виды связей
- •10.2 Измерение тесноты связи между атрибутивным признаками
- •10.2.1 Коэффициент взаимной сопряженности Чупрова и Пирсона
- •10.2.2 Коэффициенты ассоциации и контингенции
- •10.3 Измерение тесноты связи между количественными признаками
- •10.3. 1 Метод сравнения параллельных рядов
- •10.3.2 Коэффициент Фехнера
- •10.3.3 Коэффициент корреляции рангов
- •10.3.4 Метод аналитических группировок
- •10.4 Метод корреляционно-регрессионного анализа. Корреляционное отношение и коэффициент корреляции
- •10.5 Проверка значимости корреляционной связи с помощью дисперсионного анализа
- •10.6 Понятие о многофакторном корреляционно-регрессионном анализе
- •Литература
- •Содержание
- •Статистика
- •212027, Могилев, пр-т Шмидта,3.
- •212027, Могилев, пр-т Шмидта,3.
- •Выписка из протокола № 11
8.2 Показатели анализа динамики
Показатели, приводимые в рядах динамики, обычно обозначаются буквой y и называются уровнями ряда:
y0 − начальный уровень ряда,
yn − конечный уровень ряда.
Средний
уровень ряда
называется средней хронологической.
Средняя хронологическая − это средняя величина из показателей, изменяющихся во времени.
В интервальном ряду с равными интервалами средний уровень ряда определяется по формуле простой средней арифметической.
(8.1)
Средний уровень ряда в интервальном ряду динамики требует, чтобы было указано, за какой период времени он вычислен (среднемесячный, среднегодовой и т.д.).
Пример 1: Имеются следующие данные:
Месяц |
январь |
февраль |
март |
Товарооборот |
200 |
195 |
220 |
Вычислить среднемесячный товарооборот и за первый квартал:
Если интервальный ряд имеет разные интервалы, то его вначале нужно привести к ряду с равными интервалами, а затем можно будет использовать формулу (8.1).
Пример 2: Имеются следующие данные
Месяц |
январь |
февраль |
март |
2-ой квартал |
Товарооборот |
200 |
200 |
200 |
600 |
Будем считать, что во втором квартале товарооборот распределялся по месяцам равномерно, тогда среднемесячный товарооборот за 1-ое полугодие:
Так как показатели моментных рядов не обладают свойством суммарности, то среднюю нельзя вычислить, применяя формулу (8.1), в связи с тем, что остатки менялись непрерывно в течение месяца, а данные приводятся на определённый день.
Поэтому мы воспользуемся приближенным методом, основанным на предположении, что изучаемое явление менялось равномерно в течение каждого месяца. Чем короче будет интервал ряда, тем меньше ошибка будет допущена при использовании этого допущения.
Получим формулу (8.2):
(8.2)
Формула (8.2) применяется для вычисления среднего уровня в моментных рядах с равными интервалами.
Пример 3: Имеются данные об остатках строительных материалов:
На дату |
01,01 |
01,02 |
01,03 |
01,4 |
Остатки |
2000 |
1000 |
1600 |
1800 |
Определить средний остаток за 1-й квартал.
Решение.
.
Если интервалы в моментных рядах не равны, то средний уровень ряда вычисляется по формуле (8.3):
(8.3)
где
-
средний уровень в интервалах между
датами,
t - период времени (интервал ряда)
Пример 4. Имеются данные об остатках сырья и материалов
На дату |
01.01 |
01.02 |
01.03 |
01. 04 |
01.07 |
Остатки |
2000 |
1000 |
1600 |
1800 |
1760 |
Найти среднемесячные остатки сырья и материалов за первое полугодие.
Применяем формулу (8.3):