
- •Статистика
- •Часть I
- •1. Предмет и задачи статистики
- •1.1 Предмет статистики
- •1.2 Категории статистической науки
- •1.3 Задачи статистики
- •1.4 Организация статистики в Республике Беларусь
- •2.Статистическое наблюдение
- •2.1 Организационные формы наблюдения
- •2.2 Виды статистического наблюдения
- •2.3 Способы статистического наблюдения
- •2.4 Организация работы по статистическим наблюдениям
- •2.5 Ошибки статистического наблюдения
- •2.6 Контроль статистических данных
- •3 Сводка и группировка статистических материалов
- •3.1 Задачи сводки и ее основное содержание
- •3.2 Статистические группировки и их виды
- •3.2.1 Типологическая группировка
- •3.2.2 Структурная группировка
- •3.2.3 Аналитическая группировка
- •3.3 Вторичные группировки
- •3.4 Ряды распределения, их виды и графическое изображение
- •3.5 Статистические таблицы
- •3.6 Статистические графики
- •4 Обобщающие статистические показатели
- •4.1 Абсолютные величины, их виды, единицы измерения
- •4.2 Относительные величины, их виды и значения
- •4.3 Основные принципы построения относительных величин
- •4.4 Построение системы статистических показателей
- •5 Средние величины
- •5.1 Понятие средней величины. Виды средних величин
- •5.2 Средняя арифметическая, ее свойства и вычисление
- •5.3 Вычисление средней арифметической способом моментов
- •5.4 Средняя гармоническая, ее виды и вычисления
- •5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах
- •6 Показатели вариации
- •6.1 Характеристика показателей вариации
- •6.2 Основные свойства дисперсии и ее вычисление
- •6.3 Дисперсия альтернативного признака
- •6.4 Определение тесноты связи между факторами. Правило сложения дисперсий
- •7 Индексы
- •7.1 Понятие об индексах. Их классификация. Индексная символика
- •7.2 Принципы и методы построения общих индексов
- •7.3 Построение индексов качественных показателей в агрегатной форме
- •7.4 Построение агрегатных индексов, объемных показателей
- •7.5 Построение агрегатного индекса производительности труда
- •7.6 Индексы с постоянными и переменными весами
- •7.7 Преобразование агрегатных индексов в индексы средние из индивидуальных
- •7.8 Индексный метод анализа факторов динамики (система взаимосвязанных индексов)
- •7.9 Индексы постоянного, переменного состава и влияние структурных сдвигов
- •7.10 Построение территориальных индексов
- •8 Статистическое изучение динамики
- •8.1 Ряды динамики и их виды
- •8.2 Показатели анализа динамики
- •8.3 Темпы роста, их вычисление
- •8.4 Прирост и темп прироста
- •8.5 Вычисление средних темпов роста и прироста
- •8.6 Приемы анализа рядов динамики
- •8.7 Аналитическое выравнивание ряда динамики по прямой
- •При четном числе уровней динамического ряда
- •8.8 Приёмы анализа сезонных колебаний
- •9 Выборочное наблюдение
- •9.1 Общее понятие о выборочном методе и причины его использования
- •9.2 Способы отбора
- •9.2.1 Собственно случайная выборка
- •9.2.2 Механический отбор
- •9.2.3 Типический (районированный) отбор
- •9.2.4 Гнездовой (серийный) отбор
- •9.3 Понятие о моментном наблюдении и малой выборке
- •10 Статистическое изучение динамики
- •10.1 Виды связей
- •10.2 Измерение тесноты связи между атрибутивным признаками
- •10.2.1 Коэффициент взаимной сопряженности Чупрова и Пирсона
- •10.2.2 Коэффициенты ассоциации и контингенции
- •10.3 Измерение тесноты связи между количественными признаками
- •10.3. 1 Метод сравнения параллельных рядов
- •10.3.2 Коэффициент Фехнера
- •10.3.3 Коэффициент корреляции рангов
- •10.3.4 Метод аналитических группировок
- •10.4 Метод корреляционно-регрессионного анализа. Корреляционное отношение и коэффициент корреляции
- •10.5 Проверка значимости корреляционной связи с помощью дисперсионного анализа
- •10.6 Понятие о многофакторном корреляционно-регрессионном анализе
- •Литература
- •Содержание
- •Статистика
- •212027, Могилев, пр-т Шмидта,3.
- •212027, Могилев, пр-т Шмидта,3.
- •Выписка из протокола № 11
3.6 Статистические графики
Современную науку невозможно представить себе без применения графических методов.
Особое место графические методы занимают в статистике и экономике, имеющих дело с большими комплексами цифр, сведенных в громоздкие таблицы. Здесь графические методы помогают прежде всего описанию, а затем и анализу этих данных. С помощью графиков легко выявить и наглядно представить закономерности, которые часто трудно бывает уловить в сложных статистических таблицах.
Графиками в статистике называются условные изображения числовых величин и их соотношений в виде различных геометрических образов – точек, линий, плоских фигур и т.п. Каждый график состоит из графического образа и вспомогательных элементов. Графический образ – это совокупность точек, линий и фигур, с помощью которых изображаются статистические данные. Эти знаки образуют собственно языковую ткань, графика, его основу.
Вспомогательными элементами графика являются:
поле графика – то пространство, в котором размещаются образующие график геометрические знаки. Поле графика характеризуется его форматом, т.е. размером и пропорциями (соотношением сторон);
2) пространственные ориентиры, определяющие расположение геометрических знаков в поле графика. Пространственные ориентиры задаются системой координатных сеток;
3) масштабные ориентиры, придающие геометрическим знакам количественную определенность. Масштабные ориентиры определяются системой масштабных шкал или масштабными специальными знаками;
4) экспликация графика, состоящая из объяснения;
а) предмета, изображаемого графиком (его названия);
б) смыслового значения каждого знака, применяемого на данном графике.
По содержанию или назначению можно выделить графики сравнения в пространстве, графики различных относительных величин (структуры, динамики и т.п.), графики вариационных рядов, графики размещения по территории, графики взаимосвязанных показателей.
По способу построения графики можно разделить на диаграммы, картодиаграммы и картограммы.
По характеру графического образа различают диаграммы точечные, линейные, плоскостные (столбиковые, почасовые, квадратные, круговые, секторные, фигурные) и объемные.
Рассмотрим правила построения столбиковой диаграммы, которая используется чаще всего для сравнения одноименных показателей, характеризующих различные объекты или территории (рис. 3.4). Значение сравнительных показателей изображаются при этом в виде прямоугольных столбиков, имеющих одинаковую ширину и расположенных на общей горизонтальной или вертикальной базовой линии. Высота (или длина) каждого столбика в определенном масштабе соответствует величине изображаемого показателя. Столбики могут располагаться вплотную либо на одинаковом расстоянии друг от друга.
Рисунок 3.4 – Столбиковая диаграмма
Основной формой структурных диаграмм являются секторные диаграммы (рис. 3.5). «Работающим» геометрическим параметрам в секторной диаграмме удельных весов служит величина угла между радиусами: 1% принимается на диаграмме равным 3,6°, а сумма всех углов, составляющая 360°, приравнивается к 100%.
Возможности применения секторных диаграмм ограничены двумя обстоятельствами. Первое заключается в том, что они сохраняют свою выразительность при делении совокупностей на небольшое число частей – не более 4-5. Второе – секторная диаграмма выглядит убедительно лишь при существенных различиях сравниваемых структур.
Рисунок 3.5 – Секторная диаграмма
Фигурные диаграммы сравнения предназначены в основном для целей популяризации. Показатели в них вычерчиваются в виде определенного количества стандартных фигур, представляющих собой упрощенные изображения объектов, характерных для соответствующих явлений. Недостатком их следует считать некоторую неточность, связанную с необходимостью округления изображаемых показателей.
Для изображения экономических явлений, протекающих во времени, применяют динамические диаграммы.
Геометрически адекватной формой их отражения являются линейные координатные диаграммы (рис. 3.6).
Рисунок 3.6 – Линейная координатная диаграмма
Геометрическими знаками-символами на таких диаграммах служат точки и последовательно соединяющие их прямые линии, складывающиеся в ломаные «кривые», конфигурация которых дает представление об изображаемом процессе.
Ось абсцисс является в такой диаграмме осью времени с равномерно размещенными отметками, а ось ординат – осью значений, которые принимают с течением времени изучаемый показатель.