Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UP_Sinhronnye_mashiny_i_mashiny_postoyannogo_to....doc
Скачиваний:
42
Добавлен:
16.04.2019
Размер:
6.65 Mб
Скачать

1.12. Особенности работы синхронного генератора на выпрямительную нагрузку

В последнее время все более часто генератор постоянного тока заменяют синхронным генератором, на выходе которого включен полупроводниковый выпрямитель (рис. 1.41). Замена генератора постоянного тока синхронным дает возможность выполнить его более быстроходным, что в свою очередь позволяет существенно уменьшить габариты и массу машины. Это объясняется тем, что в машинах постоянного тока для обеспечения удовлетворительной коммутации (см. гл. X) приходится ограничивать окружную скорость коллектора, а следовательно, и ротора. Кроме того, эксплуатация синхронного генератора, в котором отсутствует коллектор, существенно проще, а надежность выше, чем у генератора постоянного тока.

Рис. 1.41 - Схемы синхронного генератора, работающего на выпрямитель

при трехфазной нулевой (а) и мостовой (б) схемах выпрямления

При работе генератора в схеме, на выходе которой включен выпрямитель, ток в фазах обмотки якоря является несинусоидальным. В зависимости от схемы включения вентилей этот ток будет представлять собой ряд или однополярных, или двухполярных импульсов, форма которых близка к трапеции (рис. 1.42, а, б). В ряде случаев выпрямитель, включенный на выход синхронного генератора, выполняют управляемым (на тиристорах). Задерживая моменты открытия тиристоров на некоторый угол α (угол регулирования) относительно моментов, соответствующих началу прохождения тока через вентили в схеме неуправляемого выпрямителя (на диодах), можно по желанию изменять среднюю величину выпрямленного напряжения. Применение управляемого выпрямителя позволяет осуществлять быстродействующее регулирование синхронного генератора, так как при этом не требуется изменять его ток возбуждения. В этом случае можно также питать от одного генератора несколько нагрузок, регулируя напряжение на каждой из них независимо от других.

Рис. 1.42 - Графики изменения э. д. с. и тока в фазе обмотки якоря

при работе синхронного генератора на выпрямительную нагрузку

Обычно нагрузка (на стороне постоянного тока) имеет большую индуктивность, вследствие чего ток нагрузки Id в большинстве случаев может быть принят постоянным. Переход тока от одной фазы обмотки якоря к другой не может происходить мгновенно из-за индуктивности этих фаз. Поэтому в течение времени, соответствующего углу коммутации γ, ток проходит одновременно через два вентиля и две фазы: в одной он возрастает от нуля до Id, а в другой уменьшается (рис. 1.43). В результате первая гармоника тока фазы отстает от напряжения генератора на угол, примерно равный (0,5 ÷ 0,6) γ. При включении на выход генератора управляемого выпрямителя первая гармоника тока фазы отстает от э. д. с. на угол α + 0,5γ. Угол коммутации γ может быть вычислен по формуле

,

где хк — сопротивление фазы в режиме коммутации; Ек — действующее значение фазной э.д.с. за сопротивлением хк.

При коммутации одновременно открыты однополярные вентили двух фаз (рис. 1.43), вследствие чего эти фазы оказываются замкнутыми накоротко и ток из одной фазы переходит в другую под действием разности фазных э.д.с.

Так как время коммутации вентилей очень мало (доли периода), электромагнитные процессы в машине протекают в это время так же, как и на начальном этапе внезапного двухфазного короткого замыкания (см. 1.18). При этом в качестве сопротивления хк следует принимать индуктивное сопротивление для этого режима

.

Физически это означает, что несииусоидальный ток в обмотке якоря создает высшие гармоники м. д с якоря и соответствующие потоки, которые индуктируют в демпферной обмотке и обмотке возбуждения высшие гармоники э. д. с. и токов. В результате этого форма и величина результирующего магнитного потока остаются практически неизменными.

Векторная диаграмма неявнополюсного синхронного генератора, работающего на выпрямительную нагрузку, показана на рис. 1.44, а и соответствует уравнению:

. (1.41)

В данном случае берется первая гармоника тока Ia, a э. д. с. Е0 и Ек практически синусоидальны, так как индуктируются синусоидальным магнитным потоком.

Для машины с явно выраженными полюсами векторная диаграмма (рис. 1.44, б) строится по уравнению:

. (1.41)

Вектор первой гармоники напряжения на диаграмме обычно не показывают, так как для генератора, нагруженного на выпрямитель, важным является среднее значение выпрямленного напряжения Ud.

Рис 1.43 - Графики изменения э д с , напряжения и тока в фазах обмотки якоря

с учетом коммутации тока в выпрямителе

Рис 1.44 - Векторные диаграммы синхронного генератора,

работающего на выпрямительную нагрузку

При рассмотрении рис. 1.43 легко заметить, что в период коммутации вентилей, включенных, например, в фазы А и В, мгновенное значение выпрямленного напряжения ud = 0,5 А – еВ), т. е. меньше, чем при отсутствии коммутации. Следовательно, наличие индуктивного сопротивления хк приводит к уменьшению среднего значения выпрямленного напряжения Ud по сравнению с его значением Ud0 при отсутствии коммутации и к увеличению пульсаций в кривой выпрямленного напряжения (показана жирной линией на рис. 1.43).

Величина среднего выпрямленного напряжения с учетом коммутации тока в выпрямителе при Id = const

,

где Ud0—среднее значение выпрямленного напряжения без учета коммутации тока в выпрямителе (идеализированные условия); ΔUк=mnIdxк/(2π)— среднее значение падения напряжения, обусловленного коммутацией тока в выпрямителе; n — число последовательно включенных коммутационных групп вентилей («1»—при нулевой и «2»—при мостовой схемах).

При этом в общем случае

.

При включении выпрямителя по трехфазной нулевой схеме Ud0=1,17Eк, а по трехфазной мостовой схеме Ud0 = 2,34Eк, так как к вентилям приложена линейная э. д. с. и схема выпрямления эквивалентна шестифазной.

Использование мощности. При работе синхронного генератора на выпрямитель реализуемая мощность становится меньше номинальной мощности или, как говорят, использование генератора ухудшается. Рассмотрим этот вопрос применительно к двум наиболее распространенным схемам выпрямления, заменив для простоты реальную форму тока прямоугольной с высотой Id, как это показано на рис. 1.42, а штриховой линией.

При трехфазной нулевой схеме выпрямления (рис. 1.41, а) мощность одной фазы генератора

. (1.42)

При прямоугольной форме тока действующее значение тока в любой фазе , где τ = T/3—время прохождения тока через данную фазу; Т — период изменения тока. Следовательно, мощность фазы

. (1.42)

Поскольку мощность одной фазы синхронного генератора при работе без выпрямителя Рф = IaEacosφ, то коэффициент использования генератора при трехфазной нулевой схеме выпрямления

.

Таким образом, при cosφ =l и α = 0, т.е. при отсутствии регулирования, мощность генератора, работающего на выпрямитель, снижается примерно на 1/3 по сравнению с мощностью генератора, работающего на чисто активную нагрузку. Объясняется это тем, что ток проходит через фазу только в течение 1/3 периода.

Лучшее использование генератора обеспечивается при применении трехфазной мостовой схемы выпрямления (рис. 1.41, б), при которой ток проходит через фазу в течение 2/3 периода. В этом случае мощность одной фазы генератора

, (1.42в)

а действующее значение тока фазы Ia = Id√ 2/3. Следовательно, мощность фазы генератора

, (1.42г)

а коэффициент использования

.

При увеличении угла регулирования α использование ухудшается, так как уменьшается среднее значение выпрямленного напряжения. Одновременно в этом случае первая гармоника тока якоря İа все более отстает по фазе от э. д. с. Ėк, вследствие чего возрастает размагничивающее действие реакции якоря. При построении векторной диаграммы синхронного генератора, работающего на выпрямительную нагрузку, вектор якоря Iа будет отставать на угол α + 0,5γ от вектора э. д. с. Ėк, а величина cos(α + 0,5γ) будет играть приблизительно такую же роль, как и cosφ при работе генератора на активно-индуктивную нагрузку (без выпрямителя).

Потери мощности. Высшие гармоники тока якоря создают дополнительные электрические потери в проводниках обмотки якоря (из-за явления вытеснения тока), увеличивая на 5—8% основные электрические потери в ней. Дополнительные магнитные потери в стали магнитопровода, появляющиеся от высших гармоник поля, очень невелики, так как высшие гармоники м.д. с. существенно уменьшаются токами демпферной обмотки. Генераторы, работающие на выпрямитель, целесообразно снабжать мощными демпферными обмотками еще и потому, что это уменьшает сверхпереходные индуктивности (см. 1.18), от которых зависит угол коммутации γ, влияющий на использование генератора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]