Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АСВТ ответы на вопросы.docx
Скачиваний:
7
Добавлен:
15.04.2019
Размер:
664.47 Кб
Скачать

Зачем необходим 64-х битный процессор?

Даже на рабочих станциях пока что трудно представить себе необходимость объемов памяти выше 4 Гбайт, хотя, конечно, очевидно, что совершенствование приложений, работающих с 2D и 3D графикой, а также с видео, уже в течение ближайших лет позволят перешагнуть этот барьер. Тем не менее, сегодня здесь пользы от 64-бит - ни малейшей.

Про Word, игры, и так далее - в этом контексте рассуждать вообще просто смешно, хотя, с другой стороны, по мере увеличения реалистичности отображаемого в играх мира легко себе представить необходимость в подобных объемах памяти. Достаточно представить себе все сервера, поддерживающие Ultima Online или Everquest, сконцентрированные в обычный будущий игровой PC среднего уровня.

Однако, кто-то, возможно, уже мог заметить изьян в этих рассуждениях - они ведутся так, как будто 64-бит адресация к памяти является единственным достоинством 64-бит процессоров. Неужели, от представления целых чисел в 64-бит формате для вычислений ничего не меняется? Кое-что меняется, конечно, но, во многом, для тех же серверов: симуляция ядерных взрывов, погоды, криптография, и прочие подобные приложения, где действительно может возникнуть ситуация, когда 32-бит диапазона целых чисел может не хватить. Реальный мир обычных PC - фактически, исключено. Кстати, если уж сейчас кому-то такое и нужно, то языки высокого уровня, вроде того же C, позволяют использовать стандартный фокус, когда для представления 64-бит числа используются два 32-бит регистра. Что, естественно, поскольку количество регистров весьма ограничено, несколько негативно сказывается на производительности.

Что и приводит нас к логическому финалу: для той же архитектуры, производительность 64-бит процессоров будет выше только для тех задач, где используются 64-бит вычисления, поскольку снимается необходимость использования подобных трюков. 32-бит задачи будут исполняться с той же самой скоростью, хотя, в принципе, могут, с минимальной доработкой, получить доступ к 64-бит адресному пространству. Если, опять же, они от этого получат какую-то реальную пользу.

Впрочем, уточнение "для той же архитектуры" было сделано отнюдь не зря, поскольку, если уж мы отталкиваемся от x86, то это будет справедливо только для Athlon 64 и Opteron от AMD. Все остальные игроки пошли по совсем другому направлению, разрабатывая под 64-бит совершенно отличные архитектуры. Возьмем тот же Intel, который и положил, собственно, начало шумихе по поводу 64-бит процессоров.

Логическая структура дисков

Форматирование дисков. Для того чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска.

Формирование физической структуры диска состоит в создании на диске концентрических дорожек, которые, в свою очередь, делятся на секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

После форматирования гибкого диска 3,5" его параметры будут следующими (рис. 4.24):

  • информационная емкость сектора - 512 байтов;

  • количество секторов на дорожке - 18;

  • дорожек на одной стороне - 80;

  • сторон - 2.

Рис 4.24. Физическая структура дискеты

Логическая структура гибких дисков. Логическая структура магнитного диска представляет собой совокупность секторов (емкостью 512 байтов), каждый из которых имеет свой порядковый номер (например, 100). Сектора нумеруются в линейной последовательности от первого сектора нулевой дорожки до последнего сектора последней дорожки.

На гибком диске минимальным адресуемым элементом является сектор.

При записи файла на диск будет занято всегда целое количество секторов, соответственно минимальный размер файла - это размер одного сектора, а максимальный соответствует общему количеству секторов на диске.

Файл записывается в произвольные свободные сектора, которые могут находиться на различных дорожках. Например, Файл_1 объемом 2 Кбайта может занимать сектора 34, 35 и 47, 48, а Файл_2 объемом 1 Кбайт - сектора 36 и 49.

Таблица 1.4. Логическая структура гибкого диска формата 3,5" (2-я сторона)

Для того чтобы можно было найти файл по его имени, на диске имеется каталог, представляющий собой базу данных.

Запись о файле содержит имя файла, адрес первого сектора, с которого начинается файл, объем файла, а также дату и время его создания (табл. 4.5).

Таблица 4.5. Структура записей в каталоге

Полная информация о секторах, которые занимают файлы, содержится в таблице размещения файлов (FAT - File Allocation Table). Количество ячеек FAT соответствует количеству секторов на диске, а значениями ячеек являются цепочки размещения файлов, то есть последовательности адресов секторов, в которых хранятся файлы.

Например, для двух рассмотренных выше файлов таблица FAT с 1 по 54 сектор принимает вид, представленный в табл. 4.6.

Таблица 4.6. Фрагмент FAT

Цепочка размещения для файла Файл_1 выглядит следующим образом: в начальном 34-м секторе хранится адрес 35, в 35-м секторе хранится адрес 47, в 47-м - 48, в 48-м - знак конца файла (К).

Для размещения каталога - базы данных и таблицы FAT на гибком диске отводятся секторы со 2 по 33. Первый сектор отводится для размещения загрузочной записи операционной системы. Сами файлы могут быть записаны, начиная с 34 сектора.

Виды форматирования. Существуют два различных вида форматирования дисков: полное и быстрое форматирование. Полное форматирование включает в себя как физическое форматирование (проверку качества магнитного покрытия дискеты и ее разметку на дорожки и секторы), так и логическое форматирование (создание каталога и таблицы размещения файлов). После полного форматирования вся хранившаяся на диске информация будет уничтожена.

Быстрое форматирование производит лишь очистку корневого каталога и таблицы размещения файлов. Информация, то есть сами файлы, сохраняется и в принципе возможно восстановление файловой системы.