
- •Лекция 1. История развития нейронных сетей. Определение инс, свойства инс, достоинства, недостатки. Типовые постановки задач, решаемых инс, и области их применения. Исторический аспект
- •Определение инс, свойства инс, достоинства, недостатки
- •1. Обучение
- •2.Обобщение
- •3. Абстрагирование
- •4.Применимость
- •Типовые постановки задач
- •1. Распознавание образов
- •2. Кластеризация данных
- •2.Медицина:
- •3.Авионика:
- •4.Связь:
- •5.Интернет:
- •6.Автоматизация производства:
- •7.Политические технологии:
- •8.Безопасность и охранные системы:
- •9.Ввод и обработка информации:
- •10.Геологоразведка:
- •Лекция 2.Биологический прототип. Модель искусственного нейрона. Функции активации. Классификация нейронных сетей. Основные парадигмы нейронных сетей. Биологический прототип
- •Искусственный нейрон
- •Активационные функции
- •Однослойные искусственные нейронные сети
- •Многослойные искусственные нейронные сети
- •Классификация нейронных сетей
- •1. Типы обучения нейросети
- •2. Архитектура связей
- •Нейропарадигмы
- •Лекция 3.Персептрон. Персептронная представляемость. Проблема «Исключающее или». Преодоление ограничения линейной разделимости. Обучение персептрона. Дельта-правило. Персептроны
- •Персептронная представляемость
- •Проблема функции исключающее или
- •Линейная разделимость
- •Преодоление ограничения линейной разделимости
- •Обучение персептрона
- •Трудности с алгоритмом обучения персептрона
- •Лекция 4.Сети с обратным распространением ошибки. Основной элемент сети обратного распространения. Алгоритмы обучения и функционирования.
- •Обучение сети обратного распространения.
- •Проход вперед.
- •Обратный проход.
- •Подстройка весов скрытого слоя.
- •Импульс.
- •Экспоненциальное сглаживание.
- •Трудности обучения сети обратного распространения. Паралич сети
- •Локальные минимумы
- •Размер шага
- •Временная неустойчивость
- •Слой Гроссберга.
- •Режим обучения. Обучение слоя Кохонена.
- •Предварительная обработка входных сигналов.
- •Выбор начальных значений весовых векторов.
- •Обучение слоя Гроссберга.
- •Полная структура сети встречного распространения.
- •Лекция 7. Стохастические методы обучения. Больцмановское обучение.
- •Стохастические методы обучения
- •Больцмановское обучение
- •Лекция 8.Обучение Коши. Метод искусственной теплоемкости. Комбинированный метод обратного распространения и обучения Коши. Обучение Коши
- •Метод искусственной теплоемкости
- •Комбинированный метод обратного распространения и обучения Коши
- •Лекция 9. Ассоциативные сети. Сети Хопфилда. Свойства сети Хопфилда. Статистические сети Хопфилда. Сеть Хопфилда
- •Структура сети
- •Устойчивость сети Хопфилда
- •Непрерывные сети Хопфилда
- •Статистические сети Хопфилда
- •Алгоритм обучения
- •Свойства сети Хопфилда
- •Лекция 10. Сеть Хэмминга. Двунаправленная ассоциативная память. Емкость памяти. Сеть Хэмминга
- •Структура сети
- •Алгоритм функционирования
- •Сравнение с сетью Хопфилда
- •Двунаправленная ассоциативная память
- •Функционирование сети
- •Обучение сети
- •Емкость памяти
- •Непрерывная дап
- •Адаптивная дап
- •Лекция 11. Адаптивная резонансная теория. Проблема стабильности-пластичности в инс.
- •Архитектура apt
- •Лекция 12. Функционирование и обучения сети арт. Теоремы арт. Функционирование сетей apt
- •Характеристики (теоремы) сети арт
- •Лекции 13. Проблемы реализации инс. Нейрокомпьютеры. Основные направления реализации нейросетей. Оценка производительности нейрокомпьютеров.
- •Реализация инс аппаратными средствами
- •Особенности аппаратной реализации нейросетей
- •Лекции 14. Аппаратная реализация на примере нейрочипа NeuroMatrix nm6403. Пример аппаратной реализации (нейрочип NeuroMAtrix nm6403 нтц «Модуль») Выбор и обоснование принципов построения нейрочипа
- •Архитектура нейрочипа
- •Aрхитектурныe основы построения нейросистем на базе нейрочипа
- •Лекции 15. Программная реализация нейросетей . Программная реализация нейросетей
- •Основные функциональные возможности программ моделирования нейронных сетей.
- •Формирование (создание) нейронной сети
- •Обучение нейронной сети
- •Тестирование обученной нейронной сети
- •Лекции 16. Программная реализация нейросетей на примере модели процессорного элемента NeuralWorks. Модель процессорного элемента нейропакета NeuralWorks Professional II
- •Этапы функционирования процессорного элемента.
- •Литература
7.Политические технологии:
анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.
Уже упоминавшаяся ранее группа НейроКомп из Красноярска довольно уверенно предсказывает результаты президентских выборов в США на основании анкеты из 12 вопросов. Причем, анализ обученной нейросети позволил выявить пять ключевых вопросов, ответы на которых формируют два главных фактора, определяющих успех президентской кампании.
8.Безопасность и охранные системы:
системы идентификации личности, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэрокосмических снимков, мониторинг информационных потоков, обнаружение подделок.
Многие банки используют нейросети для обнаружения подделок чеков. Корпорация Nestor (Providence, Rhode Island) установила подобную систему в Mellon Bank, что по оценкам должно сэкономить последнему $500.000 в год. Нейросеть обнаруживает в 20 раз больше подделок, чем установленная до нее экспертная система. (Tearing up the Rules, Banking Technology, ноябрь 1993)
9.Ввод и обработка информации:
обработка рукописных чеков, распознавание подписей, отпечатков пальцев и голоса, ввод в компьютер финансовых и налоговых документов.
Разработанные итальянской фирмой RES Informatica нейросетевые пакеты серии FlexRead, используются для распознавания и автоматического ввода рукописных платежных документов и налоговых деклараций. В первом случае они применяются для распознавания не только количества товаров и их стоимости, но также и формата документа. В случае налоговых деклараций распознаются фискальные коды и суммы налогов.
10.Геологоразведка:
анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
Нейросети используются фирмой Amoco для выделения характерных пиков в показаниях сейсмических датчиков. Надежность распознавания пиков - 95% по каждой сейсмо-линии. По сравнению с ручной обработкой скорость анализа данных увеличилась в 8 раз. (J.Veezhinathan & D.Wadner, Amoco, First Break Picking, IJCNN, 1990)
Обилие приведенных выше применений нейросетей - не рекламный трюк. Просто нейросети - это не что иное, как новый инструмент анализа данных. И лучше других им может воспользоваться именно специалист в своей предметной области. Основные трудности на пути еще более широкого распространения нейротехнологий - в неумении широкого круга профессионалов формулировать свои проблемы в терминах, допускающих простое нейросетевое решение. Для этого, прежде всего, нужно четко представлять себе основные особенности нейросетевой обработки информации - парадигмы ИНС.
Лекция 2.Биологический прототип. Модель искусственного нейрона. Функции активации. Классификация нейронных сетей. Основные парадигмы нейронных сетей. Биологический прототип
Нервная система человека, построенная из элементов, называемых нейронами, имеет ошеломляющую сложность. Около 1011 нейронов участвуют в примерно 1015 передающих связях, имеющих длину метр и более. Каждый нейрон обладает многими качествами, общими с другими элементами тела, но его уникальной способностью является прием, обработка и передача электрохимических сигналов по нервным путям, которые образуют коммуникационную систему мозга.
Рис. 1. Биологический нейрон.
На рис.1 показана структура пары типичных биологических нейронов. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые синапсом входные сигналы подводятся к телу нейрона, здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие - воспрепятствовать его возбуждению. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам.