
- •Лекция 1. История развития нейронных сетей. Определение инс, свойства инс, достоинства, недостатки. Типовые постановки задач, решаемых инс, и области их применения. Исторический аспект
- •Определение инс, свойства инс, достоинства, недостатки
- •1. Обучение
- •2.Обобщение
- •3. Абстрагирование
- •4.Применимость
- •Типовые постановки задач
- •1. Распознавание образов
- •2. Кластеризация данных
- •2.Медицина:
- •3.Авионика:
- •4.Связь:
- •5.Интернет:
- •6.Автоматизация производства:
- •7.Политические технологии:
- •8.Безопасность и охранные системы:
- •9.Ввод и обработка информации:
- •10.Геологоразведка:
- •Лекция 2.Биологический прототип. Модель искусственного нейрона. Функции активации. Классификация нейронных сетей. Основные парадигмы нейронных сетей. Биологический прототип
- •Искусственный нейрон
- •Активационные функции
- •Однослойные искусственные нейронные сети
- •Многослойные искусственные нейронные сети
- •Классификация нейронных сетей
- •1. Типы обучения нейросети
- •2. Архитектура связей
- •Нейропарадигмы
- •Лекция 3.Персептрон. Персептронная представляемость. Проблема «Исключающее или». Преодоление ограничения линейной разделимости. Обучение персептрона. Дельта-правило. Персептроны
- •Персептронная представляемость
- •Проблема функции исключающее или
- •Линейная разделимость
- •Преодоление ограничения линейной разделимости
- •Обучение персептрона
- •Трудности с алгоритмом обучения персептрона
- •Лекция 4.Сети с обратным распространением ошибки. Основной элемент сети обратного распространения. Алгоритмы обучения и функционирования.
- •Обучение сети обратного распространения.
- •Проход вперед.
- •Обратный проход.
- •Подстройка весов скрытого слоя.
- •Импульс.
- •Экспоненциальное сглаживание.
- •Трудности обучения сети обратного распространения. Паралич сети
- •Локальные минимумы
- •Размер шага
- •Временная неустойчивость
- •Слой Гроссберга.
- •Режим обучения. Обучение слоя Кохонена.
- •Предварительная обработка входных сигналов.
- •Выбор начальных значений весовых векторов.
- •Обучение слоя Гроссберга.
- •Полная структура сети встречного распространения.
- •Лекция 7. Стохастические методы обучения. Больцмановское обучение.
- •Стохастические методы обучения
- •Больцмановское обучение
- •Лекция 8.Обучение Коши. Метод искусственной теплоемкости. Комбинированный метод обратного распространения и обучения Коши. Обучение Коши
- •Метод искусственной теплоемкости
- •Комбинированный метод обратного распространения и обучения Коши
- •Лекция 9. Ассоциативные сети. Сети Хопфилда. Свойства сети Хопфилда. Статистические сети Хопфилда. Сеть Хопфилда
- •Структура сети
- •Устойчивость сети Хопфилда
- •Непрерывные сети Хопфилда
- •Статистические сети Хопфилда
- •Алгоритм обучения
- •Свойства сети Хопфилда
- •Лекция 10. Сеть Хэмминга. Двунаправленная ассоциативная память. Емкость памяти. Сеть Хэмминга
- •Структура сети
- •Алгоритм функционирования
- •Сравнение с сетью Хопфилда
- •Двунаправленная ассоциативная память
- •Функционирование сети
- •Обучение сети
- •Емкость памяти
- •Непрерывная дап
- •Адаптивная дап
- •Лекция 11. Адаптивная резонансная теория. Проблема стабильности-пластичности в инс.
- •Архитектура apt
- •Лекция 12. Функционирование и обучения сети арт. Теоремы арт. Функционирование сетей apt
- •Характеристики (теоремы) сети арт
- •Лекции 13. Проблемы реализации инс. Нейрокомпьютеры. Основные направления реализации нейросетей. Оценка производительности нейрокомпьютеров.
- •Реализация инс аппаратными средствами
- •Особенности аппаратной реализации нейросетей
- •Лекции 14. Аппаратная реализация на примере нейрочипа NeuroMatrix nm6403. Пример аппаратной реализации (нейрочип NeuroMAtrix nm6403 нтц «Модуль») Выбор и обоснование принципов построения нейрочипа
- •Архитектура нейрочипа
- •Aрхитектурныe основы построения нейросистем на базе нейрочипа
- •Лекции 15. Программная реализация нейросетей . Программная реализация нейросетей
- •Основные функциональные возможности программ моделирования нейронных сетей.
- •Формирование (создание) нейронной сети
- •Обучение нейронной сети
- •Тестирование обученной нейронной сети
- •Лекции 16. Программная реализация нейросетей на примере модели процессорного элемента NeuralWorks. Модель процессорного элемента нейропакета NeuralWorks Professional II
- •Этапы функционирования процессорного элемента.
- •Литература
Обучение слоя Гроссберга.
Слой Гроссберга обучается сравнительно просто. Входной вектор, являющийся выходом слоя Кохонена, подается на слой нейронов Гроссберга, и выходы слоя Гроссберга вычисляются, как при нормальном функционировании. Далее, каждый вес корректируется лишь в том случае, если он соединен с нейроном Кохонена, имеющим ненулевой выход. Величина коррекции веса пропорциональна разности между весом и требуемым выходом нейрона Гроссберга, с которым он соединен. В символьной записи это выглядит так:
vijн=vijc + β (yj- vijc)ki,
где ki- выход i-го нейрона слоя Кохонена (только для одного нейрона Кохонена он отличен от нуля); yj - j-я компонента вектора желаемых векторов.
Первоначально β берется равным 0.1 и затем постепенно уменьшается в процессе обучения.
Отсюда видно, что веса слоя Гроссберга будут сходиться к средним величинам от желаемых выходов, тогда как веса Кохонена обучаются на средних значениях входов. Обучение слоя Гроссберга- это обучение с учителем. Обучающийся без учителя самоорганизующийся слой Кохонена дает выходы в недетерминированных позициях. Они отображаются в желаемые выходы слоем Гроссберга.
Полная структура сети встречного распространения.
Рис. 19. Полная структура сети встречного распространения.
На рисунке 19 показана сеть встречного распространения целиком.
В режиме функционирования предъявляются входные векторы X и Y , и обученная сеть дает на выходе векторы X’ и Y’, являющиеся аппроксимациями X и Y, соответственно. Векторы X и Y предполагаются здесь нормализованными единичными векторами, следовательно, порождаемые на выходе векторы также будут иметь тенденцию быть нормализованными.
В процессе обучения векторы X и Y подаются одновременно и как входные векторы сети, и как желаемые выходные сигналы. Вектор Х используется для обучения выходов Х’, а вектор Y- для обучения выходов Y’ слоя Гроссберга. Сеть встречного распространения обучается с использованием того же самого метода, что и упрощенная структура сети. Нейроны Кохонена принимают входные сигналы как от векторов Х, так и от векторов Y. Но это неотличимо от ситуации, когда имеется один большой вектор, составленный из векторов X и Y, и не влияет на алгоритм обучения.
В качестве результирующего получается единичное отображение, при котором предъявление пары входных векторов порождает их пары на выходе. Это не представляется особенно интересным, если не заметить, что предъявление только вектора Х (с вектором Y, равным нулю) порождает как выходы Х’, так выходы и Y’. Если F- функция, отображающая Х в Y’, то сеть аппроксимирует ее. Также, если F обратима, то предъявление только вектора Y (приравнивая Х к нулю) порождает X’. Уникальная способность порождать функцию и обратную к ней делает сеть встречного распространения полезной в ряде приложений.
Лекция 7. Стохастические методы обучения. Больцмановское обучение.
Стохастические методы полезны как для обучения искусственных нейронных сетей, так и для получения выхода от уже обученной сети. Стохастические методы обучения приносят большую пользу, позволяя исключать локальные минимумы в процессе обучения. Но с ними также связан ряд проблем.
Стохастические методы обучения
Искусственная нейронная сеть обучается посредством некоторого процесса, модифицирующего ее веса. Если обучение успешно, то предъявление сети множества входных сигналов приводит к появлению желаемого множества выходных сигналов. Имеется два класса обучающих методов: детерминистский и стохастический.
Детерминистский метод обучения шаг за шагом осуществляет процедуру коррекции весов сети, основанную на использовании их текущих значений, а также величин входов, фактических выходов и желаемых выходов. Обучение персептрона является примером подобного детерминистского подхода.
Стохастические методы, обучения выполняют псевдослучайные изменения величин весов, сохраняя те изменения, которые ведут к улучшениям. Чтобы увидеть, как это может быть сделано, рассмотрим рис. 20, на котором изображена типичная сеть, в которой нейроны соединены с помощью весов. Выход нейрона является здесь взвешенной суммой его входов, которая, преобразована с помощью нелинейной функции. Для обучения сети может быть использована следующая процедура:
1. Предъявить множество входов и вычислить получающиеся выходы.
2. Сравнить эти выходы с желаемыми выходами и вычислить величину разности между ними. Общепринятый метод состоит в нахождении разности между фактическим и желаемым выходами для каждого элемента обучаемой пары, возведение разностей в квадрат и нахождение суммы этих квадратов. Целью обучения является минимизация этой разности, часто называемой целевой функцией.
3. Выбрать вес случайным образом и подкорректировать его на небольшое случайное значение. Если коррекция помогает (уменьшает целевую функцию), то сохранить ее, в противном случае вернуться к первоначальному значению веса.
4. Повторять шаги с 1 до 3 до тех пор, пока сеть не будет обучена в достаточной степени.
Рис. 20. Двухслойная сеть без обратных связей.
Этот процесс стремится минимизировать целевую функцию, но может попасть, как в ловушку, в неудачное решение. На рис. 21 показано, как это может иметь место в системе с единственным весом. Допустим, что первоначально вес взят, равным значению в точке А. Если случайные шаги по весу малы, то любые отклонения от точки А увеличивают целевую функцию и будут отвергнуты. Лучшее значение веса, принимаемое в точке В, никогда не будет найдено, и система будет поймана в ловушку локальным минимумом, вместо глобального минимума в точке В. Если же случайные коррекции веса очень велики, то как точка А, так и точка В будут часто посещаться, но то же самое будет иметь место и для каждой другой точки. Вес будет меняться так резко, что он никогда не установится в желаемом минимуме.
Целевая функция
Рис.21. Проблема локальных минимумов.
Полезная стратегия для избежания подобных проблем состоит в больших начальных шагах и постепенном уменьшении размера среднего случайного шага. Это позволяет сети вырываться из локальных минимумов и в то же время гарантирует окончательную стабилизацию сети.
Ловушки локальных минимумов досаждают всем алгоритмам обучения, основанным на поиске минимума, включая персептрон и сети обратного распространения, и представляют серьезную и широко распространенную трудность, которой часто не замечают. Стохастические методы позволяют решить эту проблему. Стратегия коррекции весов, вынуждающая веса принимать значение глобального оптимума в точке В, возможна.
Искусственные нейронные сети могут обучаться посредством случайной коррекции весов. Вначале делаются большие случайные коррекции с сохранением только тех изменений весов, которые уменьшают целевую функцию. Затем средний размер шага постепенно уменьшается, и глобальный минимум в конце концов достигается.
Это сильно напоминает отжиг металла, поэтому для ее описания часто используют термин «имитация отжига». В металле, нагретом до температуры, превышающей его точку плавления, атомы находятся в сильном беспорядочном движении. Как и во всех физических системах, атомы стремятся к состоянию минимума энергии (единому кристаллу в данном случае), но при высоких температурах энергия атомных движений препятствует этому. В процессе постепенного охлаждения металла возникают все более низкоэнергетические состояния, пока в конце концов не будет достигнуто низшее из возможных состояний, глобальный минимум. В процессе отжига распределение энергетических уровней описывается следующим соотношением:
Р(е)= ехр(- e/kT),
где Р(е) - вероятность того, что система находится в состоянии с энергией е; k - постоянная Больцмана; Т-температура по шкале Кельвина.
При высоких температурах Р(е) приближается к единице для всех энергетических состояний. Таким образом, высокоэнергетическое состояние почти столь же вероятно, как и низкоэнергетическое. По мере уменьшения температуры вероятность высокоэнергетических состояний уменьшается по сравнению с низкоэнергетическими. При приближении температуры к нулю становится весьма маловероятным, чтобы система находилась в высокоэнергетическом состоянии.