
- •Лекция 1. История развития нейронных сетей. Определение инс, свойства инс, достоинства, недостатки. Типовые постановки задач, решаемых инс, и области их применения. Исторический аспект
- •Определение инс, свойства инс, достоинства, недостатки
- •1. Обучение
- •2.Обобщение
- •3. Абстрагирование
- •4.Применимость
- •Типовые постановки задач
- •1. Распознавание образов
- •2. Кластеризация данных
- •2.Медицина:
- •3.Авионика:
- •4.Связь:
- •5.Интернет:
- •6.Автоматизация производства:
- •7.Политические технологии:
- •8.Безопасность и охранные системы:
- •9.Ввод и обработка информации:
- •10.Геологоразведка:
- •Лекция 2.Биологический прототип. Модель искусственного нейрона. Функции активации. Классификация нейронных сетей. Основные парадигмы нейронных сетей. Биологический прототип
- •Искусственный нейрон
- •Активационные функции
- •Однослойные искусственные нейронные сети
- •Многослойные искусственные нейронные сети
- •Классификация нейронных сетей
- •1. Типы обучения нейросети
- •2. Архитектура связей
- •Нейропарадигмы
- •Лекция 3.Персептрон. Персептронная представляемость. Проблема «Исключающее или». Преодоление ограничения линейной разделимости. Обучение персептрона. Дельта-правило. Персептроны
- •Персептронная представляемость
- •Проблема функции исключающее или
- •Линейная разделимость
- •Преодоление ограничения линейной разделимости
- •Обучение персептрона
- •Трудности с алгоритмом обучения персептрона
- •Лекция 4.Сети с обратным распространением ошибки. Основной элемент сети обратного распространения. Алгоритмы обучения и функционирования.
- •Обучение сети обратного распространения.
- •Проход вперед.
- •Обратный проход.
- •Подстройка весов скрытого слоя.
- •Импульс.
- •Экспоненциальное сглаживание.
- •Трудности обучения сети обратного распространения. Паралич сети
- •Локальные минимумы
- •Размер шага
- •Временная неустойчивость
- •Слой Гроссберга.
- •Режим обучения. Обучение слоя Кохонена.
- •Предварительная обработка входных сигналов.
- •Выбор начальных значений весовых векторов.
- •Обучение слоя Гроссберга.
- •Полная структура сети встречного распространения.
- •Лекция 7. Стохастические методы обучения. Больцмановское обучение.
- •Стохастические методы обучения
- •Больцмановское обучение
- •Лекция 8.Обучение Коши. Метод искусственной теплоемкости. Комбинированный метод обратного распространения и обучения Коши. Обучение Коши
- •Метод искусственной теплоемкости
- •Комбинированный метод обратного распространения и обучения Коши
- •Лекция 9. Ассоциативные сети. Сети Хопфилда. Свойства сети Хопфилда. Статистические сети Хопфилда. Сеть Хопфилда
- •Структура сети
- •Устойчивость сети Хопфилда
- •Непрерывные сети Хопфилда
- •Статистические сети Хопфилда
- •Алгоритм обучения
- •Свойства сети Хопфилда
- •Лекция 10. Сеть Хэмминга. Двунаправленная ассоциативная память. Емкость памяти. Сеть Хэмминга
- •Структура сети
- •Алгоритм функционирования
- •Сравнение с сетью Хопфилда
- •Двунаправленная ассоциативная память
- •Функционирование сети
- •Обучение сети
- •Емкость памяти
- •Непрерывная дап
- •Адаптивная дап
- •Лекция 11. Адаптивная резонансная теория. Проблема стабильности-пластичности в инс.
- •Архитектура apt
- •Лекция 12. Функционирование и обучения сети арт. Теоремы арт. Функционирование сетей apt
- •Характеристики (теоремы) сети арт
- •Лекции 13. Проблемы реализации инс. Нейрокомпьютеры. Основные направления реализации нейросетей. Оценка производительности нейрокомпьютеров.
- •Реализация инс аппаратными средствами
- •Особенности аппаратной реализации нейросетей
- •Лекции 14. Аппаратная реализация на примере нейрочипа NeuroMatrix nm6403. Пример аппаратной реализации (нейрочип NeuroMAtrix nm6403 нтц «Модуль») Выбор и обоснование принципов построения нейрочипа
- •Архитектура нейрочипа
- •Aрхитектурныe основы построения нейросистем на базе нейрочипа
- •Лекции 15. Программная реализация нейросетей . Программная реализация нейросетей
- •Основные функциональные возможности программ моделирования нейронных сетей.
- •Формирование (создание) нейронной сети
- •Обучение нейронной сети
- •Тестирование обученной нейронной сети
- •Лекции 16. Программная реализация нейросетей на примере модели процессорного элемента NeuralWorks. Модель процессорного элемента нейропакета NeuralWorks Professional II
- •Этапы функционирования процессорного элемента.
- •Литература
Импульс.
Метод, названный импульсом, заключается в добавлении к коррекции веса члена, пропорционального величине предыдущего изменения веса. Как только происходит коррекция, она «запоминается» и служит для модификации всех последующих коррекций. Уравнения коррекции модифицируются следующим образом:
wpq,k(n+1) = (q,kOUT p,j) + [wpq,k(n)],
wpq,k(n+1) = wpq,k(n) + wpq,k(n+1),
где - коэффициент импульса, обычно устанавливается около 0,9.
Используя метод импульса, сеть стремится идти по дну узких оврагов поверхности ошибки (если таковые имеются), а не двигаться от склона к склону. Этот метод, по-видимому, хорошо работает на некоторых задачах, но дает слабый или даже отрицательный эффект на других.
Экспоненциальное сглаживание.
Метод, основанный на экспоненциальном сглаживании, может иметь преимущество в ряде приложений.
wpq,k(n+1) = wpq,k(n) + (1-)q,kOUT p,j,
Затем вычисляется изменение веса
wpq,k(n+1) = wpq,k(n) + wpq,k(n+1),
где коэффициент сглаживания, варьируемый и диапазоне от 0,0 до 1,0. Если равен 1,0, то новая коррекция игнорируется и повторяется предыдущая. В области между 0 и 1 коррекция веса сглаживается величиной, пропорциональной . По-прежнему, является коэффициентом скорости обучения, служащим для управления средней величиной изменения веса.
Трудности обучения сети обратного распространения. Паралич сети
В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага , но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.
Локальные минимумы
Обратное распространение использует разновидность градиентного спуска, т.е. осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Статистические методы обучения могут помочь избежать этой ловушки, но они медленны. Существует метод, объединяющий статистические методы машины Коши с градиентным спуском обратного распространения и приводящий к системе, которая находит глобальный минимум, сохраняя высокую скорость обратного распространения.
Размер шага
Доказательство сходимости процесса обучения предполагает, что коррекции весов бесконечно малы. Ясно, что это неосуществимо на практике, так как ведет к бесконечному времени обучения. Размер шага должен браться конечным, и в этом вопросе приходится опираться только на опыт. Если размер шага очень мал, то сходимость слишком медленная, если же очень велик, то может возникнуть паралич или постоянная неустойчивость.