Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭВМ[шпора].docx
Скачиваний:
5
Добавлен:
14.04.2019
Размер:
129.55 Кб
Скачать

3. Маскирование прерываний.

Прерывание – это инициируемый определенным образом процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возобновлением выполнения прерванной программы. Внешние прерывания делятся на:1)маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний(IF (Interrupt Flag) – флаг прерывания. Предназначен для так называемого маскирования (запрещения) аппаратных прерываний, то есть прерываний по входу INTR. На обработку прерываний остальных типов флаг IF влияния не оказывает. Если IF=1, микропроцессор обрабатывает внешние прерывания, если IF = 0, микропроцессор игнорирует сигналы на входе INTR).2)немаскируемые — обрабатываются всегда, независимо от запретов на другие прерывания.

Билет №18

1.Методы совмещения операций.

Методы совмещения операций – методы, при которых в любой момент времени выполняется одновременно более одной базовой операции. Эти методы включают два понятия: параллелизм и конвейеризацию. Хотя у них много общего, эти термины отражают два совершенно различных подхода. При параллелизме совмещение операций достигается путем воспроизведения в нескольких копиях аппаратной структуры. Высокая производительность достигается за счет одновременной работы всех элементов структур, осуществляющих решение различных частей задачи.

Конвейеризация (конвейерная обработка) основана на разделении функции на более мелкие части (ступени) и выделении для каждой из них отдельного блока аппаратуры. Обработку любой машинной команды можно разделить на этапы, организовав передачу данных от одного этапа к следующему. Конвейеризацию можно использовать для совмещения этапов выполнения разных команд. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд. Конвейеризация широко применяется во всех современных процессорах.

Конвейеризация увеличивает пропускную способность процессора (количество команд в единицу времени), но она не сокращает время выполнения отдельной команды, а увеличивает из-за накладных расходов, связанных с управлением регистровыми станциями. Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых команд и операндов соответствует максимальной производительности конвейера.

2.Системные и локальные шины.

В вычислительной системе, состоящей из множества подсистем, необходим механизм для их взаимодействия. Эти подсистемы должны быстро и эффективно обмениваться данными.Механизмом взаимодействия является центральная шина, к которой подсоединяются все подсистемы. Подобная организация имеет два основных преимущества: низкая стоимость и универсальность. Недостатком организации с единственной шиной является то, что шина ограничивает пропускную способность ввода/вывода. Максимальная скорость шины ограничивается ее длиной и количеством подсоединяемых устройств.

Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода/вывода. Шины ввода/вывода имеют большую протяженность, поддерживают соединение многих типов устройств, и обычно следуют одному из шинных стандартов. Шины процессор-память сравнительно короткие, высокоскоростные и стремятся обеспечить максимальную пропускную способность канала память-процессор.

Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы.

Главное устройство шины – это устройство, которое может инициировать операции чтения или записи. Процессор, например, всегда является главным устройством шины. Шина имеет несколько главных устройств, если имеется несколько центральных процессоров или когда устройства ввода/вывода могут инициировать транзакции на шине. Приоритетность управляющих устройств основано на системе прерываний.

Шина бывает синхронной и асинхронной. Если шина синхронная, то по линиям управления шины передаются сигналы синхронизации. Все на шине должно происходить с одной и той же частотой синхронизации, поэтому из-за проблемы перекоса синхросигналов, синхронные шины не могут быть длинными. Обычно шины процессор-память синхронные. В асинхронной шине используется старт-стопный режим передачи. Шины ввода/вывода обычно асинхронные.

3.Установка оперативной памяти.

В большинстве ПК с системными платами для процессора 386 или 486 используются 30-контактные разъемы SIMM, а раннее поколение системных плат для Pentium обладает уже 72-контактными SIMM. Модули DIMM имеют 168 контактов. Они применяются в последних системах PentuimII и Pentium III. Модули DIMM можно добавлять по одному, а 72-контактные модули SIMM нужно устанавливать обязательно парами (так называемыми банками), составленными из модулей равного объема. В некоторых системных платах необходимо заполнять разъемы особым образом – в первый банк вставляется пара модулей большего объема.

Одни модули ОЗУ содержат дополнительную микросхему для проверки ошибок или контроля четности, другие нет. Совмещать их нельзя.

Первые модули SIMM и DIMM имели позолоченные контакты (разъемы для ОЗУ на системной плате были с тем же покрытием). Позднее стали применять менее дорогое олово, и контакты приобрели серебристый цвет. Не рекомендуется вставлять модули с позолоченными контактами в разъемы, покрытые оловом, и наоборот – примерно через год слой окисления может вырасти настолько, что приведет к сбоям в работе памяти.

Билет №19