
- •Курсовой проект (пояснительная записка)
- •Содержание
- •1 Описание работы машины и исходные данные для проектирования
- •2 Исследование динамики машинного агрегата
- •3 Динамический синтез и анализ машинного агрегата по заданному коэффициенту неравномерности движения δ
- •3.1 Задачи динамического синтеза и анализа машинного агрегата
- •3.2 Структурный анализ рычажного механизма
- •3.3 Определение размеров звеньев рычажного механизма
- •3.4 Определение кинематических характеристик рычажного механизма
- •3.4.1 Графический метод решения
- •3.4.1.1 Построение плана положений механизма
- •3.4.1.2 Построение плана аналогов скоростей и определение первых передаточных функций механизма
- •3.4.2 Аналитический метод решения
- •3.4 2.1 Составление схемы алгоритма расчета кинематических характеристик механизма
- •3.4.2.2 Расчет кинематических характеристик рычажного механизма
- •3.5 Выбор динамической модели и её обоснование
- •3.6 Построение индикаторной диаграммы и расчет движущей силы для всех положений механизма
- •3.7 Расчет приведенного момента движущих сил в двух контрольных положениях
- •3.8 Построение графика приведенных моментов движущих сил и сил сопротивления
- •3.9 Определение работы движущих сил
- •3.10 Построение графика изменения работы движущих сил и сил сопротивления
- •3.11 Расчет переменной составляющей приведенного момента инерции
- •3.12 Построение графика переменной составляющей приведенного момента инерции
- •3.15 Определение момента инерции маховика и его параметров
- •3.16 Составление схемы алгоритма по определению закона движения звена приведения ω1(t)
- •3.17 Построение графика изменения угловой скорости звена приведения
- •3.18 Составление схемы алгоритма по определению закона движения звена приведения ε1(t)
- •3.19 Построение графика изменения углового ускорения звена приведения
- •3.20 Построение графика кинематических характеристик рычажного механизма
- •3.21 Построение графика изменения кинетической энергии машины
- •3.22 Анализ и выводы по разделу
- •Динамический анализ рычажного механизма
- •4.1 Задачи динамического анализа и методы их решения
- •4.2 Кинематический анализ рычажного механизма в контрольном положении №3
- •4.2.1 Построение плана положения механизма
- •4.2.2 Построение плана скоростей и расчёт скоростей точек и звеньев механизма
- •4.2.3 Построения планов ускорений и расчёт ускорений точек и звеньев механизма
- •4.4.3 Построение плана положения механизма 1 класса
- •4.4.4 Построение плана сил входного звена и определение реакции
- •4.4.5 Определение уравновешивающего момента
- •4.5 Составление схемы алгоритма аналитического определения динамических реакций в группе Асура (2;3) и в механизме 1 класса
- •4.6 Кинематический анализ рычажного механизма в контрольном положении №9
- •4.6.1 Построение плана положения механизма
- •4.6.2 Построение плана скоростей и расчёт скоростей точек и звеньев механизма
- •4.6.3 Построения планов ускорений и расчёт ускорений точек и звеньев механизма
- •4.8.2 Построение плана положения механизма 1 класса
- •4.8.3 Построение плана сил входного звена и определение реакции
- •4.8.4 Определение уравновешивающего момента
- •4.9 Составление схемы алгоритма аналитического определения динамических реакций в группе Асура (2;3) и в механизме 1 класса
- •5.3 Составление схемы алгоритма расчёта кинематических характеристик толкателя
- •Аналог скорости движения толкателя определяется по уравнению:
- •5.4 Расчет значений перемещения толкателя, его аналогов скорости и ускорения для 2-х контрольных положений
- •5.5. Определение экстремальных значений аналогов скорости и ускорения толкателя на фазах удаления и возвращения, а также соответствующих им перемещений
- •5.6 Построение совмещенной диаграммы и определение основных размеров механизма из условия максимально допустимого угла давления
- •А) Кинематическая диаграмма перемещения толкателя
- •Б) Кинематическая диаграмма аналога скорости толкателя:
- •В) Кинематическая диаграмма аналога ускорения толкателя.
- •5.7.2 Определения радиуса ролика толкателя, построение действительного профиля кулачка
- •5.8 Определение угла давления и построение графика зависимости угла давления от угла поворота кулачка
- •5.9 Расчет основных размеров
- •5.10 Составление схемы алгоритма расчета полярных и декартовых координат центрового профиля кулачка
3.2 Структурный анализ рычажного механизма
На рисунке 3.1 изображена схема исследуемого механизма,
где 1 – кривошип; 2 – шатун; 3 – ползун; 0 – стойка.
Рисунок 3.1. Схема механизма
Число всех звеньев механизма m = 4.
Число подвижных звеньев механизма n = 3.
Определим класс кинематических пар:
O (0 - 1) - вращательная, одноподвижная, 5 класс;
A (1 - 2) - вращательная, одноподвижная, 5 класс;
B (2 - 3) - вращательная, одноподвижная, 5 класс;
C (3 - 0) – цилиндрическая, одноподвижная, 5 класс.
Число высших пар – р4 = 0.
Число низших пар – р5 = 4.
Так как механизм плоский, то для определения числа степеней свободы механизма используем формулу Чебышева: W = 3·n – 2·p5 – р4
Таким образом, получаем: W = 3·3 – 2·4 – 0= 1.
То, что W = 1 означает, что положение звеньев механизма определяется заданием одной независимой обобщенной координаты входного звена – угла φ1.
Разобьём механизм на группы Ассура и механизм I класса:
а) б)
Рисунок 3.2. Структурный анализ
На рисунке 3.2.(а) изображена группа Ассура 2 класса, 2 вида, 2 порядка. Механизм на рисунке 3.2.(б) является механизмом 1 класса. Наивысший класс присоединенных групп Ассура – второй, поэтому механизм относится ко второму классу.
Формула строения механизма будет выглядеть следующим образом:
I(0;1)→II(2;3) (3.1)
3.3 Определение размеров звеньев рычажного механизма
Рисунок 3.3. Расположение механизма в крайних положениях
На рисунке 3.3. изображен механизм в крайних положениях с указанием хода поршня – Н.
Найдем длину кривошипа:
Найдем длину шатуна:
Найдем максимальный угол давления:
Найдем расстояние
от точки A
до точки S2
(центра масс шатуна 2) из условия:
Определение массы звеньев механизма.
Масса шатуна:
Масса кривошипа:
Масса поршня:
Определим моменты инерции звеньев.
Момент инерции кривошипа:
Момент инерции шатуна:
Определим среднюю угловую скорость кривошипа.
где n1 – частота вращения кривошипа.
где u1H – передаточное отношение планетарной передачи;
nH – частота вращения карданного вала.
В таблице 3.1. сведены основные геометрические характеристики рычажного механизма.
Таблица 3.1. Основные геометрические характеристики рычажного механизма
|
Линейные размеры |
|
Массовые характеристики |
|||||
r, м |
l, м |
|
|
|
|
|
||
188,4 |
0,0875 |
0,35 |
90 |
28 |
3,5 |
1,1 |
0,12 |
0,07 |
3.4 Определение кинематических характеристик рычажного механизма
3.4.1 Графический метод решения
3.4.1.1 Построение плана положений механизма
Рассчитав значения lOA, lAB, lAS2 можно приступить к построению плана положений механизма.
Так как данный механизм имеет вертикальное расположение, то геометрическое место точек всех положений ползуна находится на вертикальной прямой, проходящей через ось вращения кривошипа.
Для построения плана положений механизма необходимо задать масштабный коэффициент, с помощью которого реальные размеры звеньев механизма выражаются в отрезках, изображаемых на чертеже.
Принимаем
Определим значения величин AB и AS2:
На листе формата А1 выбираем точку O и наносим систему координат XOY. Из точки O проводим окружность радиуса OА и разбиваем ее на 12 равных частей. Полученные на окружности точки нумеруем от «1» до «13» (начинаем с верхней, и далее по ходу вращения кривошипа) и соединяем их с центром О. Данные отрезки будут являться положениями кривошипа.
Из точек на окружности проводим отрезки длиной АВ до пересечения их с осью OY и полученные на оси ординат точки нумеруем в соответствии с нумерацией точек на окружности. Данные точки будут являться планом положений ползуна, а отрезки - шатуна.
На плане положений шатуна от точек Ai откладываем отрезки длиной AS2, и полученные точки нумеруем соответственно.
- начальная обобщенная координата,
соответствующая положению механизма
в верхней мертвой точке.