
- •1. Микроэлектроника и микросхемотехника. Основные термины и определения в микроэлектронике.
- •2. Классификация имс, система условных обозначений, особенности и отличия имс от схем на дискретных элементах.
- •Классификация по функциональному назначению.
- •Классификация по конструктивно-технологическому признаку
- •3. Основные технологические операции при производстве гибридных имс: получение подложки, ее первичная обработка.
- •Получение подложки.
- •Очистка подложки от химических и физических загрязнений.
- •4. Основные технологические операции при производстве гибридных имс: нанесение резистивной и проводящей пленок.
- •Нанесение резистивного слоя
- •Получение необходимого рисунка пленочных элементов
- •Заключительные технологические операции
- •5.Основные технологические операции при производстве гибридных имс: толстопленочная и тонкопленочная технологии.
- •Заключительные технологические операции
- •7. Основные технологические операции при производстве гибридных имс: монтаж компонентов, монтаж в корпус.
- •8. Пленочные элементы гибридных имс: резисторы, проводники и контактные площадки.
- •9. Пленочные элементы гибридных имс: конденсаторы.
- •10. Пленочные элементы гибридных имс: катушки индуктивности.
- •11. Основные технические операции при производстве полупроводниковых имс: общие сведения, требование к производственным помещениям.
- •12. Основные технические операции при производстве полупроводниковых имс: получение слитка монокристалла кремния, его резка на пластины.
- •Получение слитка монокристалла кремния
- •Очистка монокристалла кремния
- •Легирование кристалла
- •Резка кристалла на пластины
- •13. Основные технические операции при производстве п/пр имс: первичная обработка п/пр пластины, окисление.
- •14. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: структура и топология имс, цикл формирования топологических слоев.
- •15. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: фотолитография и травление.
- •16. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: ионная имплантация.
- •17. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: диффузия.
- •18. Основные технические операции при производстве п/пр имс: получение областей. Другого типа проводимостей: эпитаксия. Резка пластины на кристаллы и монтаж в корпус, герметизация.
- •19. Методы изоляции элементов п/пр имс.
- •20. Базовые структуры п/пр имс: резисторы, транзисторы.
- •21. Базовые структуры п/пр имс: конденсаторы на основе p-n-перехода, мдп-конденсаторы.
- •22. Источники тока. Основные положения.
- •Основные параметры источников тока
- •23. Источники тока. Простое токовое зеркало. Основные соотношения. Температурный коэффициент.
- •24. Источники тока. Простое токовое зеркало. Разбаланс токов в ветвях.
- •25. Разновидности схем простого токового зеркала: токовое зеркало с уменьшенным значением выходного тока.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •27. Разновидности схем простого токового зеркала: токовое зеркало Уилсона.
- •28. Разновидности схем простого токового зеркала: высокоточные источники тока.
- •29. Источники опорного напряжения: Основные соотношения. Влияние ос на выходное сопротивление ион.
- •30. Источники опорного напряжения: Простейший источник опорного напряжения.
- •31. Источники опорного напряжения: ион на стабилитронах.
- •34.Температурная компенсация: общие положения.
- •Источник опорного напряжения с температурной компенсацией
- •Термостатирование
- •32. Источники опорного напряжения: ион на основе ширины запрещенной зоны.
- •33. Источники опорного напряжения: Температурная компенсация и термостатирование. Термокомпенсированный источник опорного напряжения.
- •34. Интегральные стабилизаторы напряжения (исн). Классификация, основные термины и определения.
- •Интегральные стабилизаторы напряжения.
- •35. Исн. Основные схемы включения.
- •36. Параметры исн.
- •37. Схемотехника линейных стабилизаторов напряжения.
- •38. Защита в исн.
- •39. Интегральные стабилизаторы для переносных устройств.
- •40. Преобразователи постоянного напряжения на коммутируемых конденсаторах.
- •41. Оу. Общие сведения.
- •Основные параметры оу
- •42. Идеальный операционный усилитель.
- •43. Основные схемы включения операционного усилителя: Дифференциальное включение.
- •44. Основные схемы включения операционного усилителя: Инвертирующее включение.
- •45. Основные схемы включения операционного усилителя: Неинвертирующее включение.
- •46. Внутренняя структура операционных усилителей.
- •47. Стандартная схема операционного усилителя.
- •48. Схема замещения операционного усилителя.
- •49. Коррекция частотной характеристики.
- •50. Статические параметры операционных усилителей.
- •51. Динамические параметры оу.
- •52. Типы операционных усилителей.
- •52. Типы операционных усилителей
- •53. Классификация оу по принципам построения.
- •54. Операционный усилитель модулятор-демодулятор.
- •55. Операционный усилитель с периодической компенсацией дрейфа.
- •56. Интегральные компараторы напряжения (икн). Основные положения.
- •57. Икн. Измерение статических параметров компараторов.
- •58. Икн. Измерение динамических параметров компараторов.
- •59. Компаратор напряжения с пос.
- •60. Схемотехника икн (на примере микросхемы mA710).
- •61. Ак. Общие сведения.
- •62. Коммутаторы на полевых транзисторах.
- •63. Аналоговые мультиплексоры.
- •64. Статические характеристики ак.
- •65. Динамические характеристики и эксплуатационные параметры ак.
- •66. Увх: Общие сведения. Назначение.
- •67. Параметры увх.
- •68. Схема двухкаскадного увх на примере 1100ск2.
- •Структурная схема микросхем увх 1100ск2
- •69. Апс. Основные сведения.
- •70. Апс. Основные методы аналогового перемножения. Параболические перемножители
- •Перемножители на основе амлитудно-широтной импульсной модуляции
- •71. Перемножители на основе управляемого напряжением диф. Усилителя.
- •72. Перемножители на основе управляемого током диф. Делителя тока.
- •73. Линейный преобразователь «напряжение-ток».
- •74. Статические параметры перемножителей. Погрешность перемножения апс
- •Настройка апс на минимальную погрешность
- •Нелинейность перемножения апс
- •Напряжение смещения апс
- •Остаточное напряжение апс
- •75. Динамические параметры перемножителей.
- •76. Применение апс на примере 525пс2 в режиме перемножения и делителя напряжения.
- •77. Применение апс на примере 525пс2 в режиме возведения в квадрат, извлечения корня и регулируемого усилителя. Возведение в степень
- •Извлечение корня
- •78 .Цап. Общие сведения. Классификация.
- •Основные параметры цап
- •Статические параметры:
- •Динамические параметры,
- •Шумы, помехи и дрейфы
- •Чувствительность к нестабильности источника питания- отношение изменения выходного напряжения к вызвавшему его изменению напряжения питания.
- •79. Последовательные цап. Цап с широтно-импульсной модуляцией. Цап с широтно-импульсной модуляцией
- •80. Последовательный цап на переключаемых конденсаторах.
- •81. Параллельные цап. Цап с двоично-взвешенными резисторами.
- •82. Параллельные цап. Цап с матрицей r-2r.
- •83. Цап на источниках тока.
- •84. Формирование выходного сигнала в виде напряжения.
- •85. Параллельный цап на переключаемых конденсаторах.
- •86. Цап с суммированием напряжений.
- •87. Интерфейсы цифро-аналоговых преобразователей.
- •Цап с последовательным интерфейсом входных данных
- •88. Обработка чисел, имеющих знак.
- •89. Перемножители и делители функций, аттенюаторы и интеграторы на цап, системы прямого цифрового синтеза сигналов.
- •Аттенюаторы и интеграторы на цап
- •Системы прямого цифрового синтеза сигналов.
- •90. Параметры цап.
- •Статические параметры
- •Динамические параметры
- •Шумы цап
- •91. Ацп. Общие сведения. Классификация.
- •92. Ацп последовательного счета.
- •93. Ацп последовательного приближения.
- •93. Ацп последовательного приближения.
- •94. Параллельные ацп.
- •95. Многоступенчатые ацп.
- •96. Многотактные ацп.
- •97. Конвеерные ацп.
- •98. Ацп двойного интегрирования.
- •99. Сигма-дельта ацп.
81. Параллельные цап. Цап с двоично-взвешенными резисторами.
В данной схеме используется способ формирования выходного напряжения по принципу суммирования токов. Структурная схема ЦАП со взвешенными резисторами приведена на Рис. 57.
Рис. 57 Структурная схема ЦАП со взвешенными резисторами
Для построения ЦАП с разрядностью N требуется N взвешенных резисторов. Ключами, которые подсоединяют резисторы либо к общему проводу, либо к опорному напряжению, управляют разряды цифрового кода аi, где i - изменяется от 0 до N-1, причем а0 соответствует старшему разряду, а аN-1 младшему. Сопротивление i-того резистора для этой схемы определяется по формуле:
,
где i
изменяется от 0 до N-1
(N
- разрядность ЦАП). Тогда ток через i-тый
резистор при его подключении к опорному
напряжению можно определить по формуле:
А напряжение на выходе при одном подключенном резисторе определяется по формуле:
Выходное напряжение ЦАП со взвешенными резисторами по этой структурной схеме можно определить по формуле:
,
где ai
соответствующие
разряды входного цифрового кода (а=1 или
а=0).
Недостатки данной схемы :
1. Необходимость обеспечения высокой точности подгонки взвешенных резисторов.
2. Необходимость обеспечения одинаковой температурной стабильности разных резисторов, что для различных значений сопротивлений сделать достаточно сложно.
3. Конечное сопротивление ключей неодинаково влияет на различные разряды.(На старшие больше).
Лучшие свойства имеет ЦАП с использованием матрицы R-2R.
82. Параллельные цап. Цап с матрицей r-2r.
Структурная схема ЦАП с матрицей R-2R приведена на Рис. 58. Особенность данной схемы: для любого узла матрицы R-2R эквивалентное сопротивление левой части равно эквивалентному сопротивлению правой части и равно 2R. Для определения выходного напряжения данной схемы воспользуемся принципом суперпозиции (или методом наложения, что одно и тоже). Т.е. напряжение на выходе находится как сумма напряжений при разных вариантах подачи 1 на один разряд цифрового кода. Вначале найдем напряжение в нулевом узле если все цифровые коды кроме а0 равны нулю, а а0=1 (т.е. только резистор 2R отходящий от этого узла подключен к опорному напряжению). В этом случае напряжение в нулевом узле будет в три раза меньше опорного напряжения (т.к. образуется резистивный делитель 2R-R, где R образуется как параллельное соединение эквивалентного сопротивления левой части и эквивалентного сопротивления правой части), а напряжение на выходе в этом случае будет равно UОП/2. Затем найдем напряжение в первом узле если все цифровые коды кроме а1 равны нулю, а а1=1 (т.е. только резистор 2R отходящий от этого узла подключен к опорному напряжению). В этом случае напряжение в первом узле будет тоже в три раза меньше опорного напряжения, и при этом напряжение в нулевом узле будет в два раза меньше чем в первом узле (образуется резистивный делитель R-R), а напряжение на выходе в этом случае будет равно UОП/4.
Рис. 58 Структурная схема ЦАП с матрицей R-2R
Таким образом, делаем вывод что при подключении i-того резистора к опорному напряжению, напряжение в i-том узле равно UОП/3, а напряжение в узле i-1 будет в два раза меньше чем в i-том, а напряжение в узле i-2 будет в четыре раза меньше чем в i-том и т.д. Итак, при а0=1 выходное напряжение UВЫХ=UОП/2, при а1=1 выходное напряжение UВЫХ=UОП/4, при а2=1 выходное напряжение UВЫХ=UОП/8 и т.д. Т.е. выходное напряжение определяется по формуле аналогичной для выходного напряжения ЦАП со взвешенными резисторами:
, где ai соответствующие разряды входного цифрового кода (а=1 или а=0).
Достоинства данной схемы:
Требуется получение только двух номиналов резисторов (иногда пользуются и одним номиналом - для получения резистора 2R используют последовательное включение двух резисторов R, при этом не требуется согласовывать резисторы по температуре, т.к. при изменении температуры их сопротивление увеличится на одинаковую величину и при этом отношение резисторов не измениться),
Кроме того исключается требование к абсолютной точности сопротивлений резисторов, а решающее значение оказывает относительный разброс этих сопротивлений.
Основные проблемы, при создании ЦАП на базе рассмотренных структур, связаны с обеспечением высоких значений точности преобразования и быстродействия.