Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры от scootee по МиМ (Полные).docx
Скачиваний:
54
Добавлен:
13.04.2019
Размер:
2.83 Mб
Скачать

40. Преобразователи постоянного напряжения на коммутируемых конденсаторах.

При конструировании электронных устройств часто требуется источник питания с различными значениями выходного напряжения. Широкое применение в современных устройствах находят преобразователи постоянного напряжения на переключающихся конденсаторах, позволяющие вырабатывать требуемые напряжения от одного источника питания. В статье рассматриваются принципы работы таких преобразователей, их технические характеристики и варианты применения.

Рассмотрим принцип работы преобразователя на примере широко распространенной микросхемы IСL7660/MAX1044 с расширенными функциональными возможностями. Микросхема МАХ1044 отличается от IСL7660 наличием входа Boost (увеличение частоты внутреннего генератора). Структурная схема микросхемы ICL7660 приведена на рис.1.

 

Рис. 1.

Схема содержит четыре силовых МОП ключа, управляемых логическими элементами и сдвигателем уровня напряжения, работа которых осуществляется на частоте, полученной в результате деления на два частоты задающего RC генератора. Это позволяет формировать управляющие импульсы с требуемыми характеристиками «меандр» и оптимизировать по потреблению работу задающего RC генератора, рабочая частота которого без внешних элементов составляет 10 кГц. Внутренний регулятор напряжения необходим для обеспечения работы микросхемы от источника с пониженным напряжением.

Принцип работы микросхемы в режиме идеального инвертора напряжения рассмотрим по функциональной схеме, приведенной на рис.2.

 

Рис. 2.

При замыкании ключей S1 и S3 и размыкании ключей S2 и S4 во время первой половины цикла внешний конденсатор С1 заряжается от источника питания до напряжения V+, а при замыкании ключей S2 и S4 и размыкании ключей S1 и S3 во время второй половины цикла конденсатор С1 передает частично свой заряд внешнему конденсатору С2, обеспечивая на выводе VOUT микросхемы напряжение -V+. Указанные значения напряжения соответствуют установившемуся режиму.

Энергия, передаваемая конденсатором С1 за один цикл, определяется с помощью выражения

(1)

где V1 (V2) - напряжение на конденсаторе С1 в конце первой (второй) половины цикла.

Одним из основных показателей преобразователя является коэффициент преобразования

(2)

где Uвых - напряжение на выходе преобразователя при токе нагрузки, равном i; Uвых.ид. - напряжение на выходе идеального преобразователя (для инвертора Uвых.ид.=-Uвх).

Из выражения (2) видно, что высокое значение коэффициента преобразования достигается при Uвых(i) = Uвых.ид., т.е. при V1 = V2. Однако, как видно из выражения (1), в этом случае снижается переносимая конденсатором С1 энергия, что затрудняет обеспечение высокого значения коэффициента преобразования. Повышение переносимой конденсатором энергии возможно при увеличении емкости С1 или рабочей частоты. В первом случае возрастают габариты конденсатора и, следовательно, габариты преобразователя. Во втором случае возрастают потери энергии в реальном устройстве, что снижает его коэффициент полезного действия

 

где Рвых - мощность, отдаваемая в нагрузку; Рвх - мощность, потребляемая от источника питания.

Из проведенного анализа видно, что при разработке конкретного устройства преобразования необходима оптимизация значений рабочей частоты и емкости конденсатора С1. Для этого необходимо предусмотреть возможность изменения рабочей частоты в соответствии со значениями рабочих напряжений и потребляемых токов.