
- •1. Микроэлектроника и микросхемотехника. Основные термины и определения в микроэлектронике.
- •2. Классификация имс, система условных обозначений, особенности и отличия имс от схем на дискретных элементах.
- •Классификация по функциональному назначению.
- •Классификация по конструктивно-технологическому признаку
- •3. Основные технологические операции при производстве гибридных имс: получение подложки, ее первичная обработка.
- •Получение подложки.
- •Очистка подложки от химических и физических загрязнений.
- •4. Основные технологические операции при производстве гибридных имс: нанесение резистивной и проводящей пленок.
- •Нанесение резистивного слоя
- •Получение необходимого рисунка пленочных элементов
- •Заключительные технологические операции
- •5.Основные технологические операции при производстве гибридных имс: толстопленочная и тонкопленочная технологии.
- •Заключительные технологические операции
- •7. Основные технологические операции при производстве гибридных имс: монтаж компонентов, монтаж в корпус.
- •8. Пленочные элементы гибридных имс: резисторы, проводники и контактные площадки.
- •9. Пленочные элементы гибридных имс: конденсаторы.
- •10. Пленочные элементы гибридных имс: катушки индуктивности.
- •11. Основные технические операции при производстве полупроводниковых имс: общие сведения, требование к производственным помещениям.
- •12. Основные технические операции при производстве полупроводниковых имс: получение слитка монокристалла кремния, его резка на пластины.
- •Получение слитка монокристалла кремния
- •Очистка монокристалла кремния
- •Легирование кристалла
- •Резка кристалла на пластины
- •13. Основные технические операции при производстве п/пр имс: первичная обработка п/пр пластины, окисление.
- •14. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: структура и топология имс, цикл формирования топологических слоев.
- •15. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: фотолитография и травление.
- •16. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: ионная имплантация.
- •17. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: диффузия.
- •18. Основные технические операции при производстве п/пр имс: получение областей. Другого типа проводимостей: эпитаксия. Резка пластины на кристаллы и монтаж в корпус, герметизация.
- •19. Методы изоляции элементов п/пр имс.
- •20. Базовые структуры п/пр имс: резисторы, транзисторы.
- •21. Базовые структуры п/пр имс: конденсаторы на основе p-n-перехода, мдп-конденсаторы.
- •22. Источники тока. Основные положения.
- •Основные параметры источников тока
- •23. Источники тока. Простое токовое зеркало. Основные соотношения. Температурный коэффициент.
- •24. Источники тока. Простое токовое зеркало. Разбаланс токов в ветвях.
- •25. Разновидности схем простого токового зеркала: токовое зеркало с уменьшенным значением выходного тока.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •27. Разновидности схем простого токового зеркала: токовое зеркало Уилсона.
- •28. Разновидности схем простого токового зеркала: высокоточные источники тока.
- •29. Источники опорного напряжения: Основные соотношения. Влияние ос на выходное сопротивление ион.
- •30. Источники опорного напряжения: Простейший источник опорного напряжения.
- •31. Источники опорного напряжения: ион на стабилитронах.
- •34.Температурная компенсация: общие положения.
- •Источник опорного напряжения с температурной компенсацией
- •Термостатирование
- •32. Источники опорного напряжения: ион на основе ширины запрещенной зоны.
- •33. Источники опорного напряжения: Температурная компенсация и термостатирование. Термокомпенсированный источник опорного напряжения.
- •34. Интегральные стабилизаторы напряжения (исн). Классификация, основные термины и определения.
- •Интегральные стабилизаторы напряжения.
- •35. Исн. Основные схемы включения.
- •36. Параметры исн.
- •37. Схемотехника линейных стабилизаторов напряжения.
- •38. Защита в исн.
- •39. Интегральные стабилизаторы для переносных устройств.
- •40. Преобразователи постоянного напряжения на коммутируемых конденсаторах.
- •41. Оу. Общие сведения.
- •Основные параметры оу
- •42. Идеальный операционный усилитель.
- •43. Основные схемы включения операционного усилителя: Дифференциальное включение.
- •44. Основные схемы включения операционного усилителя: Инвертирующее включение.
- •45. Основные схемы включения операционного усилителя: Неинвертирующее включение.
- •46. Внутренняя структура операционных усилителей.
- •47. Стандартная схема операционного усилителя.
- •48. Схема замещения операционного усилителя.
- •49. Коррекция частотной характеристики.
- •50. Статические параметры операционных усилителей.
- •51. Динамические параметры оу.
- •52. Типы операционных усилителей.
- •52. Типы операционных усилителей
- •53. Классификация оу по принципам построения.
- •54. Операционный усилитель модулятор-демодулятор.
- •55. Операционный усилитель с периодической компенсацией дрейфа.
- •56. Интегральные компараторы напряжения (икн). Основные положения.
- •57. Икн. Измерение статических параметров компараторов.
- •58. Икн. Измерение динамических параметров компараторов.
- •59. Компаратор напряжения с пос.
- •60. Схемотехника икн (на примере микросхемы mA710).
- •61. Ак. Общие сведения.
- •62. Коммутаторы на полевых транзисторах.
- •63. Аналоговые мультиплексоры.
- •64. Статические характеристики ак.
- •65. Динамические характеристики и эксплуатационные параметры ак.
- •66. Увх: Общие сведения. Назначение.
- •67. Параметры увх.
- •68. Схема двухкаскадного увх на примере 1100ск2.
- •Структурная схема микросхем увх 1100ск2
- •69. Апс. Основные сведения.
- •70. Апс. Основные методы аналогового перемножения. Параболические перемножители
- •Перемножители на основе амлитудно-широтной импульсной модуляции
- •71. Перемножители на основе управляемого напряжением диф. Усилителя.
- •72. Перемножители на основе управляемого током диф. Делителя тока.
- •73. Линейный преобразователь «напряжение-ток».
- •74. Статические параметры перемножителей. Погрешность перемножения апс
- •Настройка апс на минимальную погрешность
- •Нелинейность перемножения апс
- •Напряжение смещения апс
- •Остаточное напряжение апс
- •75. Динамические параметры перемножителей.
- •76. Применение апс на примере 525пс2 в режиме перемножения и делителя напряжения.
- •77. Применение апс на примере 525пс2 в режиме возведения в квадрат, извлечения корня и регулируемого усилителя. Возведение в степень
- •Извлечение корня
- •78 .Цап. Общие сведения. Классификация.
- •Основные параметры цап
- •Статические параметры:
- •Динамические параметры,
- •Шумы, помехи и дрейфы
- •Чувствительность к нестабильности источника питания- отношение изменения выходного напряжения к вызвавшему его изменению напряжения питания.
- •79. Последовательные цап. Цап с широтно-импульсной модуляцией. Цап с широтно-импульсной модуляцией
- •80. Последовательный цап на переключаемых конденсаторах.
- •81. Параллельные цап. Цап с двоично-взвешенными резисторами.
- •82. Параллельные цап. Цап с матрицей r-2r.
- •83. Цап на источниках тока.
- •84. Формирование выходного сигнала в виде напряжения.
- •85. Параллельный цап на переключаемых конденсаторах.
- •86. Цап с суммированием напряжений.
- •87. Интерфейсы цифро-аналоговых преобразователей.
- •Цап с последовательным интерфейсом входных данных
- •88. Обработка чисел, имеющих знак.
- •89. Перемножители и делители функций, аттенюаторы и интеграторы на цап, системы прямого цифрового синтеза сигналов.
- •Аттенюаторы и интеграторы на цап
- •Системы прямого цифрового синтеза сигналов.
- •90. Параметры цап.
- •Статические параметры
- •Динамические параметры
- •Шумы цап
- •91. Ацп. Общие сведения. Классификация.
- •92. Ацп последовательного счета.
- •93. Ацп последовательного приближения.
- •93. Ацп последовательного приближения.
- •94. Параллельные ацп.
- •95. Многоступенчатые ацп.
- •96. Многотактные ацп.
- •97. Конвеерные ацп.
- •98. Ацп двойного интегрирования.
- •99. Сигма-дельта ацп.
56. Интегральные компараторы напряжения (икн). Основные положения.
Компараторы занимают промежуточное положение между аналоговыми и цифровыми микросхемами и являются простейшими АЦП. По массовости применения в микроэлектронной аппаратуре и номенклатуре компараторы уступают среди аналоговых микросхем только ОУ. Компараторы можно отнести к специализированным ОУ, в которых нормальным является нелинейный режим работы каскадов. Компараторы предназначены для сравнения входного сигнала с опорным. При этом в зависимости от того, больше входной сигнал опорного или меньше(на доли милливольта), на выходе компаратора за минимальное время должно установиться напряжение лог.0 или лог.1. Приемниками выходных сигналов компараторов обычно являются логические схемы. Поэтому выходные напряжения каждого компаратора согласуется с ТТЛ,ТЛЭС или КМОП схемами.
Подобно ОУ в компараторе обычно три каскада: входной дифференциальный усилитель, промежуточный усилитель и выходной формирователь ВФ.
Основные отличия схемотехники компараторов от ОУ:
Т.к. компараторы не предназначены для работы с обратной связью, то в них отсутствует частотная коррекция, кот сниж быстродействие.
В отличие от ОУ, которые являются линейными элементами, в компараторах может использоваться дозированная положительная обратная связь для повышения быстродействия и в этом случае на выходе компаратора при любом входном напряжении может быть только одно из двух напряжений, соответствующих высокому и низкому уровню.
В компараторах применены специальные методы по повышению быстродействия (например, транзисторы Шотки и др.).
Выходной каскад спроектирован таким образом, чтобы согласовываться как по уровню, так и по току с цифровыми микросхемами.
57. Икн. Измерение статических параметров компараторов.
Статические параметры компараторов полностью аналогичны статическим параметрам ОУ.
В лабораторной работе измеряются напряжение смещения компаратора Uсм, ЭДС смещения Eсм, входные токи Iвх1 и Iвх2, разность входных токов DIвх.
Согласно ГОСТ измерения этих параметров производятся по схеме представленной на Рис. 36, где DA1-измеряемый компаратор, а DA2-вспомогательный ОУ, называемый вспомогательное устройство балансировки (ВУБ). ВУБ на выходе компаратора DA1 поддерживает нулевое выходное напряжение с точностью собственного напряжения смещения и конечного коэффициента усиления.
Рис. 36 Схема для измерения статических характеристик компаратора (ОУ)
В случае, когда SA1 и SA2 замкнуты, на выходе измеряемого компаратора должно появиться некоторое напряжение, обусловленное наличием на входе DA1 ЭДС смещения. Но за счёт отрицательной обратной связи (резистор R5) напряжение на выходе DA2 скомпенсирует ошибку от ЭДС смещения и на выходе DA1 будет поддерживаться нулевое выходное напряжение. Следовательно, напряжение в точке А равняется ЭДС смещения компаратора и противоположно по знаку. Таким образом, зная напряжение Ux1 на выходе DA2 можно рассчитать ЭДС смещения компаратора:
В случае, когда SA2 замкнут, а SA1 разомкнут, на входе компаратора DA1 дополнительно к ЭДС смещения появляется напряжение, обусловленное протеканием входного тока по сопротивлению R2. Напряжение на выходе ВУБ(DA2) Ux2 скомпенсирует эту ошибку. Т.о. напряжение в точке А с одной стороны определяется выражением:
а с другой стороны:
Из Error: Reference source not found с учётом Error: Reference source not found и Error: Reference source not found найдём:
В случае, когда SA1 замкнут, а SA2 разомкнут, на входе компаратора DA1 дополнительно к ЭДС смещения появляется напряжение, обусловленное протеканием входного тока по сопротивлению R4. Аналогично Iвх1 входной ток Iвх2 определяется выражением:
где Ux3 - напряжение на выходе ВУБ в данном случае.
В случае, когда SA1 и SA2 разомкнуты, на входе компаратора DA1 дополнительно к ЭДС смещения появляется напряжение, обусловленное протеканием входных токов по сопротивлениям R4 и R2. В случае равенства резисторов R2 и R4 это напряжение определяется DIвx R2 или DIвх R1.
Аналогично Iвх1 и Iвх2, разность входных токов DIвх определяется выражением:
Ф. 29
где Ux4 - напряжение на выходе ВУБ в данном случае.