
- •1. Микроэлектроника и микросхемотехника. Основные термины и определения в микроэлектронике.
- •2. Классификация имс, система условных обозначений, особенности и отличия имс от схем на дискретных элементах.
- •Классификация по функциональному назначению.
- •Классификация по конструктивно-технологическому признаку
- •3. Основные технологические операции при производстве гибридных имс: получение подложки, ее первичная обработка.
- •Получение подложки.
- •Очистка подложки от химических и физических загрязнений.
- •4. Основные технологические операции при производстве гибридных имс: нанесение резистивной и проводящей пленок.
- •Нанесение резистивного слоя
- •Получение необходимого рисунка пленочных элементов
- •Заключительные технологические операции
- •5.Основные технологические операции при производстве гибридных имс: толстопленочная и тонкопленочная технологии.
- •Заключительные технологические операции
- •7. Основные технологические операции при производстве гибридных имс: монтаж компонентов, монтаж в корпус.
- •8. Пленочные элементы гибридных имс: резисторы, проводники и контактные площадки.
- •9. Пленочные элементы гибридных имс: конденсаторы.
- •10. Пленочные элементы гибридных имс: катушки индуктивности.
- •11. Основные технические операции при производстве полупроводниковых имс: общие сведения, требование к производственным помещениям.
- •12. Основные технические операции при производстве полупроводниковых имс: получение слитка монокристалла кремния, его резка на пластины.
- •Получение слитка монокристалла кремния
- •Очистка монокристалла кремния
- •Легирование кристалла
- •Резка кристалла на пластины
- •13. Основные технические операции при производстве п/пр имс: первичная обработка п/пр пластины, окисление.
- •14. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: структура и топология имс, цикл формирования топологических слоев.
- •15. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: фотолитография и травление.
- •16. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: ионная имплантация.
- •17. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: диффузия.
- •18. Основные технические операции при производстве п/пр имс: получение областей. Другого типа проводимостей: эпитаксия. Резка пластины на кристаллы и монтаж в корпус, герметизация.
- •19. Методы изоляции элементов п/пр имс.
- •20. Базовые структуры п/пр имс: резисторы, транзисторы.
- •21. Базовые структуры п/пр имс: конденсаторы на основе p-n-перехода, мдп-конденсаторы.
- •22. Источники тока. Основные положения.
- •Основные параметры источников тока
- •23. Источники тока. Простое токовое зеркало. Основные соотношения. Температурный коэффициент.
- •24. Источники тока. Простое токовое зеркало. Разбаланс токов в ветвях.
- •25. Разновидности схем простого токового зеркала: токовое зеркало с уменьшенным значением выходного тока.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •27. Разновидности схем простого токового зеркала: токовое зеркало Уилсона.
- •28. Разновидности схем простого токового зеркала: высокоточные источники тока.
- •29. Источники опорного напряжения: Основные соотношения. Влияние ос на выходное сопротивление ион.
- •30. Источники опорного напряжения: Простейший источник опорного напряжения.
- •31. Источники опорного напряжения: ион на стабилитронах.
- •34.Температурная компенсация: общие положения.
- •Источник опорного напряжения с температурной компенсацией
- •Термостатирование
- •32. Источники опорного напряжения: ион на основе ширины запрещенной зоны.
- •33. Источники опорного напряжения: Температурная компенсация и термостатирование. Термокомпенсированный источник опорного напряжения.
- •34. Интегральные стабилизаторы напряжения (исн). Классификация, основные термины и определения.
- •Интегральные стабилизаторы напряжения.
- •35. Исн. Основные схемы включения.
- •36. Параметры исн.
- •37. Схемотехника линейных стабилизаторов напряжения.
- •38. Защита в исн.
- •39. Интегральные стабилизаторы для переносных устройств.
- •40. Преобразователи постоянного напряжения на коммутируемых конденсаторах.
- •41. Оу. Общие сведения.
- •Основные параметры оу
- •42. Идеальный операционный усилитель.
- •43. Основные схемы включения операционного усилителя: Дифференциальное включение.
- •44. Основные схемы включения операционного усилителя: Инвертирующее включение.
- •45. Основные схемы включения операционного усилителя: Неинвертирующее включение.
- •46. Внутренняя структура операционных усилителей.
- •47. Стандартная схема операционного усилителя.
- •48. Схема замещения операционного усилителя.
- •49. Коррекция частотной характеристики.
- •50. Статические параметры операционных усилителей.
- •51. Динамические параметры оу.
- •52. Типы операционных усилителей.
- •52. Типы операционных усилителей
- •53. Классификация оу по принципам построения.
- •54. Операционный усилитель модулятор-демодулятор.
- •55. Операционный усилитель с периодической компенсацией дрейфа.
- •56. Интегральные компараторы напряжения (икн). Основные положения.
- •57. Икн. Измерение статических параметров компараторов.
- •58. Икн. Измерение динамических параметров компараторов.
- •59. Компаратор напряжения с пос.
- •60. Схемотехника икн (на примере микросхемы mA710).
- •61. Ак. Общие сведения.
- •62. Коммутаторы на полевых транзисторах.
- •63. Аналоговые мультиплексоры.
- •64. Статические характеристики ак.
- •65. Динамические характеристики и эксплуатационные параметры ак.
- •66. Увх: Общие сведения. Назначение.
- •67. Параметры увх.
- •68. Схема двухкаскадного увх на примере 1100ск2.
- •Структурная схема микросхем увх 1100ск2
- •69. Апс. Основные сведения.
- •70. Апс. Основные методы аналогового перемножения. Параболические перемножители
- •Перемножители на основе амлитудно-широтной импульсной модуляции
- •71. Перемножители на основе управляемого напряжением диф. Усилителя.
- •72. Перемножители на основе управляемого током диф. Делителя тока.
- •73. Линейный преобразователь «напряжение-ток».
- •74. Статические параметры перемножителей. Погрешность перемножения апс
- •Настройка апс на минимальную погрешность
- •Нелинейность перемножения апс
- •Напряжение смещения апс
- •Остаточное напряжение апс
- •75. Динамические параметры перемножителей.
- •76. Применение апс на примере 525пс2 в режиме перемножения и делителя напряжения.
- •77. Применение апс на примере 525пс2 в режиме возведения в квадрат, извлечения корня и регулируемого усилителя. Возведение в степень
- •Извлечение корня
- •78 .Цап. Общие сведения. Классификация.
- •Основные параметры цап
- •Статические параметры:
- •Динамические параметры,
- •Шумы, помехи и дрейфы
- •Чувствительность к нестабильности источника питания- отношение изменения выходного напряжения к вызвавшему его изменению напряжения питания.
- •79. Последовательные цап. Цап с широтно-импульсной модуляцией. Цап с широтно-импульсной модуляцией
- •80. Последовательный цап на переключаемых конденсаторах.
- •81. Параллельные цап. Цап с двоично-взвешенными резисторами.
- •82. Параллельные цап. Цап с матрицей r-2r.
- •83. Цап на источниках тока.
- •84. Формирование выходного сигнала в виде напряжения.
- •85. Параллельный цап на переключаемых конденсаторах.
- •86. Цап с суммированием напряжений.
- •87. Интерфейсы цифро-аналоговых преобразователей.
- •Цап с последовательным интерфейсом входных данных
- •88. Обработка чисел, имеющих знак.
- •89. Перемножители и делители функций, аттенюаторы и интеграторы на цап, системы прямого цифрового синтеза сигналов.
- •Аттенюаторы и интеграторы на цап
- •Системы прямого цифрового синтеза сигналов.
- •90. Параметры цап.
- •Статические параметры
- •Динамические параметры
- •Шумы цап
- •91. Ацп. Общие сведения. Классификация.
- •92. Ацп последовательного счета.
- •93. Ацп последовательного приближения.
- •93. Ацп последовательного приближения.
- •94. Параллельные ацп.
- •95. Многоступенчатые ацп.
- •96. Многотактные ацп.
- •97. Конвеерные ацп.
- •98. Ацп двойного интегрирования.
- •99. Сигма-дельта ацп.
53. Классификация оу по принципам построения.
Однако для разработки ОУ недостаточно классификации по параметрам. Необходима классификация по принципам построения или структурным схемам ОУ. Такая классификация приведена на рисунке 1. Все усилители делятся на ОУ с дифференциальным входом(ДОУ) и ОУ только с инвестирующим входом(Ин ОУ). Каждая группа может быть построена без преобразования сигнала(ОУ БП) и с преобразованием сигнала(ОУ ПС). Преобразование сигнала может быть реализовано в схемах с однократной модуляцией и демодуляцией(ОУ МДМ-1) или с двукратной(ОУ МДМ-2), с управляемыми генераторами(ОУ УГ), а также с периодической компенсацией дрейфа(ОУ ПКД). Каждый из перечисленных классов ОУ может выполняться с применением параллельного высокочастотного канала(ВЧС) или без него. Кроме того, ОУ могут быть выполнены либо как преобразователи напряжения в напряжение, т. е. без повторителя тока(ПТ) на входе, либо как преобразователи тока в напряжение с ПТ на входе.
Операционные
усилители без преобразования сигнала
просты, удобны для интегральной технологии
изготовления и потому получили наибольшее
распространение. Их, в свою, очередь
можно разбить на различные подгруппы
в зависимости от построения входных и
выходных каскадов. Наиболее часто их
делят по типу входных транзисторов на
ОУ с обычными биполярными транзисторами,
с транзисторами «супер -
»(со
сверхвысоким усилением по току), с
полевыми транзисторами с p-n - переходом
и ОУ с МОП - транзисторами. Операционные
усилители БП всех этих подгрупп имеют
высокое применение: первых двух -
благодаря простоте изготовления и
низкой стоимости, вторых двух - благодаря
сочетанию сравнительно малого входного
тока с малым дрейфом нуля. Операционные
усилители с полевыми транзисторами
обладают еще меньшим IВХ, особенно с МОП
- транзисторами на входе, они позволяют
также иметь большую VМАКС, но по дрейфу
ЕСМ значительно уступают первым двум
группам.
Усилители с дифференциальным входом обладают существенно большими функциональными возможностями, чем только инвертирующие. Однако ДОУ не могут полностью заменить Ин ОУ, так как последние позволяют получать большее быстродействие и лучшую стабильность.
Операционные усилители с преобразованием сигнала обычно сложней и дороже, чем ОУ БП, но они необходимы для обеспечения минимальных значений дрейфа и низкочастотных шумов. Причём ОУ МДМ-1 позволяют обеспечить минимальный дрейф нуля, но они имеют больший уровень шумов, чем ОУ МДМ-2. Операционные усилители с управляемыми генераторами имеют преимущества при обеспечении высокого входного сопротивления, малого входного тока и при гальванической развязке цепей. Операционные усилители с периодической компенсацией дрейфа по электрическим параметрам несколько уступают ОУ МДМ-1, но оказываются более технологичными по реализации по полупроводниковой интегральной технологии.
Усилители с ВЧК по сравнению с одноканальными(без ВЧК) позволяют получить больший запас устойчивости, увеличить частоту среза и максимальную скорость нарастания сигнала.
Для получения минимального времени установления выходного напряжения с заданной погрешностью существенными преимуществами обладают ОУ с повторителем тока на входе.
Очевидно, при разработке ОУ необходимо учитывать не только требования к их параметрам, но и те возможности, которые обеспечивает каждый из приведённых на рисунке 1 принципов построения ОУ, а также возможность и целесообразность изготовления их по полупроводниковой интегральной технологии, гибридной интегральной технологии или в виде модулей из дискретных и интегральных элементов.