
- •1. Микроэлектроника и микросхемотехника. Основные термины и определения в микроэлектронике.
- •2. Классификация имс, система условных обозначений, особенности и отличия имс от схем на дискретных элементах.
- •Классификация по функциональному назначению.
- •Классификация по конструктивно-технологическому признаку
- •3. Основные технологические операции при производстве гибридных имс: получение подложки, ее первичная обработка.
- •Получение подложки.
- •Очистка подложки от химических и физических загрязнений.
- •4. Основные технологические операции при производстве гибридных имс: нанесение резистивной и проводящей пленок.
- •Нанесение резистивного слоя
- •Получение необходимого рисунка пленочных элементов
- •Заключительные технологические операции
- •5.Основные технологические операции при производстве гибридных имс: толстопленочная и тонкопленочная технологии.
- •Заключительные технологические операции
- •7. Основные технологические операции при производстве гибридных имс: монтаж компонентов, монтаж в корпус.
- •8. Пленочные элементы гибридных имс: резисторы, проводники и контактные площадки.
- •9. Пленочные элементы гибридных имс: конденсаторы.
- •10. Пленочные элементы гибридных имс: катушки индуктивности.
- •11. Основные технические операции при производстве полупроводниковых имс: общие сведения, требование к производственным помещениям.
- •12. Основные технические операции при производстве полупроводниковых имс: получение слитка монокристалла кремния, его резка на пластины.
- •Получение слитка монокристалла кремния
- •Очистка монокристалла кремния
- •Легирование кристалла
- •Резка кристалла на пластины
- •13. Основные технические операции при производстве п/пр имс: первичная обработка п/пр пластины, окисление.
- •14. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: структура и топология имс, цикл формирования топологических слоев.
- •15. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: фотолитография и травление.
- •16. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: ионная имплантация.
- •17. Основные технические операции при производстве п/пр имс: получение областей другого типа проводимостей: диффузия.
- •18. Основные технические операции при производстве п/пр имс: получение областей. Другого типа проводимостей: эпитаксия. Резка пластины на кристаллы и монтаж в корпус, герметизация.
- •19. Методы изоляции элементов п/пр имс.
- •20. Базовые структуры п/пр имс: резисторы, транзисторы.
- •21. Базовые структуры п/пр имс: конденсаторы на основе p-n-перехода, мдп-конденсаторы.
- •22. Источники тока. Основные положения.
- •Основные параметры источников тока
- •23. Источники тока. Простое токовое зеркало. Основные соотношения. Температурный коэффициент.
- •24. Источники тока. Простое токовое зеркало. Разбаланс токов в ветвях.
- •25. Разновидности схем простого токового зеркала: токовое зеркало с уменьшенным значением выходного тока.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •26. Разновидности схем простого токового зеркала: токовое зеркало с эмиттерными сопротивлениями.
- •27. Разновидности схем простого токового зеркала: токовое зеркало Уилсона.
- •28. Разновидности схем простого токового зеркала: высокоточные источники тока.
- •29. Источники опорного напряжения: Основные соотношения. Влияние ос на выходное сопротивление ион.
- •30. Источники опорного напряжения: Простейший источник опорного напряжения.
- •31. Источники опорного напряжения: ион на стабилитронах.
- •34.Температурная компенсация: общие положения.
- •Источник опорного напряжения с температурной компенсацией
- •Термостатирование
- •32. Источники опорного напряжения: ион на основе ширины запрещенной зоны.
- •33. Источники опорного напряжения: Температурная компенсация и термостатирование. Термокомпенсированный источник опорного напряжения.
- •34. Интегральные стабилизаторы напряжения (исн). Классификация, основные термины и определения.
- •Интегральные стабилизаторы напряжения.
- •35. Исн. Основные схемы включения.
- •36. Параметры исн.
- •37. Схемотехника линейных стабилизаторов напряжения.
- •38. Защита в исн.
- •39. Интегральные стабилизаторы для переносных устройств.
- •40. Преобразователи постоянного напряжения на коммутируемых конденсаторах.
- •41. Оу. Общие сведения.
- •Основные параметры оу
- •42. Идеальный операционный усилитель.
- •43. Основные схемы включения операционного усилителя: Дифференциальное включение.
- •44. Основные схемы включения операционного усилителя: Инвертирующее включение.
- •45. Основные схемы включения операционного усилителя: Неинвертирующее включение.
- •46. Внутренняя структура операционных усилителей.
- •47. Стандартная схема операционного усилителя.
- •48. Схема замещения операционного усилителя.
- •49. Коррекция частотной характеристики.
- •50. Статические параметры операционных усилителей.
- •51. Динамические параметры оу.
- •52. Типы операционных усилителей.
- •52. Типы операционных усилителей
- •53. Классификация оу по принципам построения.
- •54. Операционный усилитель модулятор-демодулятор.
- •55. Операционный усилитель с периодической компенсацией дрейфа.
- •56. Интегральные компараторы напряжения (икн). Основные положения.
- •57. Икн. Измерение статических параметров компараторов.
- •58. Икн. Измерение динамических параметров компараторов.
- •59. Компаратор напряжения с пос.
- •60. Схемотехника икн (на примере микросхемы mA710).
- •61. Ак. Общие сведения.
- •62. Коммутаторы на полевых транзисторах.
- •63. Аналоговые мультиплексоры.
- •64. Статические характеристики ак.
- •65. Динамические характеристики и эксплуатационные параметры ак.
- •66. Увх: Общие сведения. Назначение.
- •67. Параметры увх.
- •68. Схема двухкаскадного увх на примере 1100ск2.
- •Структурная схема микросхем увх 1100ск2
- •69. Апс. Основные сведения.
- •70. Апс. Основные методы аналогового перемножения. Параболические перемножители
- •Перемножители на основе амлитудно-широтной импульсной модуляции
- •71. Перемножители на основе управляемого напряжением диф. Усилителя.
- •72. Перемножители на основе управляемого током диф. Делителя тока.
- •73. Линейный преобразователь «напряжение-ток».
- •74. Статические параметры перемножителей. Погрешность перемножения апс
- •Настройка апс на минимальную погрешность
- •Нелинейность перемножения апс
- •Напряжение смещения апс
- •Остаточное напряжение апс
- •75. Динамические параметры перемножителей.
- •76. Применение апс на примере 525пс2 в режиме перемножения и делителя напряжения.
- •77. Применение апс на примере 525пс2 в режиме возведения в квадрат, извлечения корня и регулируемого усилителя. Возведение в степень
- •Извлечение корня
- •78 .Цап. Общие сведения. Классификация.
- •Основные параметры цап
- •Статические параметры:
- •Динамические параметры,
- •Шумы, помехи и дрейфы
- •Чувствительность к нестабильности источника питания- отношение изменения выходного напряжения к вызвавшему его изменению напряжения питания.
- •79. Последовательные цап. Цап с широтно-импульсной модуляцией. Цап с широтно-импульсной модуляцией
- •80. Последовательный цап на переключаемых конденсаторах.
- •81. Параллельные цап. Цап с двоично-взвешенными резисторами.
- •82. Параллельные цап. Цап с матрицей r-2r.
- •83. Цап на источниках тока.
- •84. Формирование выходного сигнала в виде напряжения.
- •85. Параллельный цап на переключаемых конденсаторах.
- •86. Цап с суммированием напряжений.
- •87. Интерфейсы цифро-аналоговых преобразователей.
- •Цап с последовательным интерфейсом входных данных
- •88. Обработка чисел, имеющих знак.
- •89. Перемножители и делители функций, аттенюаторы и интеграторы на цап, системы прямого цифрового синтеза сигналов.
- •Аттенюаторы и интеграторы на цап
- •Системы прямого цифрового синтеза сигналов.
- •90. Параметры цап.
- •Статические параметры
- •Динамические параметры
- •Шумы цап
- •91. Ацп. Общие сведения. Классификация.
- •92. Ацп последовательного счета.
- •93. Ацп последовательного приближения.
- •93. Ацп последовательного приближения.
- •94. Параллельные ацп.
- •95. Многоступенчатые ацп.
- •96. Многотактные ацп.
- •97. Конвеерные ацп.
- •98. Ацп двойного интегрирования.
- •99. Сигма-дельта ацп.
33. Источники опорного напряжения: Температурная компенсация и термостатирование. Термокомпенсированный источник опорного напряжения.
Термокомпенсированный источник опорного напряжения. Термостатированные источники опорного напряжения.
Температурная компенсация: общие положения
Температурно независимый источник опорного напряжения - электрическая схема, предназначенная для получения выходного напряжения, не зависящего от температуры. Конечно, практически невозможно достичь полной независимости от температуры, особенно в широком температурном диапазоне.
Изменение выходного напряжения схемы источника опорного напряжения с температурой называется температурным коэффициентом напряжения, или .
Температурный коэффициент выходного напряжения ТКUВЫХ - самая важная характеристика источника опорного напряжения. В большинстве случаев желательно, чтобы опорное напряжение как можно меньше зависело от напряжения питания; иными словами, чтобы было реализовано заметное уменьшени е потребляемой мощности. Кроме того, желательно, чтобы выходное напряжение как можно меньше зависело от тока в нагрузке, или выходного тока, то есть схема должна иметь низкое выходное сопротивление. Источник напряжения, следовательно, сочетает низкий ТКU, низкое выходное сопротивление.
Поскольку все электронные компоненты, используемые в схемах опорного напряжения, имеют некоторый ТКU, основные компоненты подбираются так, чтобы имели место компенсирующие эффекты, приводящие по крайней мере номинально к ТКU=0 при данной температуре. Такой метод носит название термокомпенсация. Простейшим примером термокомпенсации служит последовательное включение стабилитрона и диода. Как известно, прямой и обратносмещенный p-n переход имеют разные знаки температурных коэффициентов, хотя и разные по величине, т.о. достигается частичная температурная компенсация.
Источник опорного напряжения с температурной компенсацией
В данной схеме ток от источника I0 вызывает обратное смещение тока через VT1, так что VT1 работает ка стабилитрон. Падение напряжения на VT1 - это напряжение пробоя перехода между эмиттером и базой. Это напряжение обычно составляет от 6 до 7 В.
Расчитаем значения сопротивлений R1 ,R2 для получения нулевого температурного коэффициента. Выходное напряжение данного ИОН найдем из метода наложения.
а) При отсутствии транзистора VT4 выходное напряжение определяется следующим образом:
б) При отсутствии транзисторов VT1-VT3:
Суммарное выходное напряжение определяется:
Ф. 20
Возьмем производную по температуре последнего выражения с учетом того, что изменения отношения сопротивлений резисторов пренебрежимо малы по сравнению с изменением напряжений база-эмиттер и приравняем производную нулю:
Ф. 21
Зная производные по температуре напряжения стабилизации и базо-эмиттерного напряжения из последнего выражения можно рассчитать значение для отношения резисторов R1/R2:
Ф.
22
При выполнении последнего условия TKUВЫХ будет равняться нулю.Для нахождения значения выходного напряжения необходимо подставить значение этого отношения в Ф. 18. Для удобства расчета числитель и знаменатель правой части выражения Ф. 18 предварительно разделим на R1:
Заметим, что выходное напряжение нельзя получить произвольного значения, а только фиксированного значения, определяемого ТКUВЫХ=0. Для расчета конкретных значений сопротивлений необходимо задаться рабочим током транзисторов VT2, VT3, VT4 и сначала рассчитать значение сопротивления R2, а затем зная значение отношения сопротивлений рассчитать сопротивление резистора R1. При выполненни лабораторной работы значение рабочего тока принять в пределах 0.2-0.5мА.
Отметим, что выходное сопротивление такого источника невысоко и определяется приблизительно как сопротивление параллельно соединенных резисторов R1 и R2. Поэтому, с одной стороны, необходимо выбирать как можно больший рабочий ток, а с другой стороны, ток не должен быть больше допустимого тока коллекторов транзисторов VT2-VT4, и кроме этого большой рабочий ток ведет к увеличению потребляемой мощности.
Используя данную схему источника опорного напряжения можно теоретически получить нулевой температурный коэффициент. Другими словами говоря, ТКU будет равен нулю, если значения всех параметров схемы точно совпадают с расчетными. Если какой либо параметр схемы не совпадает с расчетным, температурный коэффициент будет отличаться от нуля, хотя может оставаться при этом очень малым
При исследовании влияния отличия параметров схемы от расчетной необходимо воспользоваться формулой Error: Reference source not found, предварительно разделив числитель и знаменатель правой части на R2:
Исследуем влияние отклонения реальных параметров от расчетных. Сначала рассчитаем значение отношения резисторов для нулевого температурного коэффициента по формуле Ф. 19. Для типичных значений и расчет по этой формуле дает значение для отношения сопротивлений равным 3.3.
Рассчитаем какой будет температурный коэффициент при отклонении температурного коэффициета напряжения стабилизации от расчетного на 5%:
Несмотря на то, что температурный коэффициент не равен нулю, для большинства реализуемых практических ситуаций он все же достаточно мал.
Рассмотрим влияние отклонения от расчетного значения на 0.1 мВ/С:
Как видно он также достаточно мал. Наконец, оценим влияния отклонения отношения сопротивлений резисторов от расчетного. Для резисторов ИС, близких по конструкции и выполненных на одном кристалле, допустимое отклонение отношения обычно менее 5%, оценим влияние 2%-ного отклонения фактического отношения сопротивлений от расчетного среднего значения:
Как видно из последних трех формул, во всех случаях получался достаточно малый температурный коэффициент, и поэтому, данная схема может широко применяться на практике.
Термостатирование
Термостатирование - это поддержание температуры элементов схемы постоянной. В источнике опорного напряжения с тепловой стабилизацией температура установлена или поддерживается на постоянном уровне. В результате его выходное напряжение практически не зависит от внешней температуры и можно получить температурный коэффициент меньше чем 10-6 1/0С.
Во всех источниках опорного напряжения с тепловой стабилизацией температуру кристалла поддерживают выше внешней температуры методом замыкания цепи обратной связи. С помощью цепи обратной связи, которая контролирует количество электроэнергии, рассеявшейся на кристалле, и фиксирует подъем температуры вследствии этого рассеяния, обычно поддерживают температуру кристалла примерно от 90 до 100 0С. Схема температурной стабилизации и схема источника опорного напряжения размещается на одном кристалле кремния, поэтому между ними существует хороший тепловой контакт вследствии высокой теплопроводности кремния и малых размеров кристалла.
Математическая формулировка температурной стабилизации имеет вид:
при