Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика 1 сем Курс лекций.docx
Скачиваний:
18
Добавлен:
04.01.2019
Размер:
1.2 Mб
Скачать

2.8 Обзор кривых второго порядка

Прямая на плоскости является линией первого порядка, так как определяется уравнением первой степени с двумя переменными. Рассмотрим кривые второго порядка, то есть линии, определяемые в декартовых координатах уравнениями второй степени. Установлено, что таких линий всего четыре: окружность, эллипс, гипербола и парабола.

Было получено уравнение окружности с центром С(х0, у0) и радиусом r:

(х–х0)2 + (у–у0)2 = r2 (25)

Из этого уравнения можно получить так называемое общее уравнение окружности: x2+y2+mx+ny+p=0. Заметим, что коэффициенты при х2 и у2 в уравнении окружности одинаковы. Если же в уравнении коэффициенты при х2 и у2 будут разными по величине, но одного знака, то такое уравнение будет определять эллипс.

Простейшее (каноническое) уравнение эллипса имеет вид:

(26)

Чтобы построить такой эллипс, отметим точки пересечения эллипса с осями координат: А1(a, 0), А2(-а, 0), В1(0, b), В2(0, -b), называемые вершинами эллипса. Расстояние между вершинами А1А2=2а и В1В2=2b называют осями, а числа а и b – полуосями эллипса (а0, b0). Из уравнения (15) эллипса видно, что эллипс – фигура, симметричная относительно обеих осей и начала координат. Для точного построения эллипса используем определение:

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух данных точек F1 и F2, называемых фокусами, есть величина постоянная.

Фокусы F1(c, 0) и F2(–c, 0) построим, учитывая,

что (при аb).

По определению сумма остается постоянной для любой точки М(х, у) эллипса.

Рисунок - 38

Если центр симметрии эллипса расположен в точке С(х0, у0) и оси симметрии параллельны координатным осям, то уравнение эллипса:

(27)

Рисунок - 39

В школьном курсе гипербола рассматривается как график обратной пропорциональной зависимости .

Рассмотрим более общий случай гиперболы, начав с ее определения:

Гиперболой называется множество точек плоскости, разность расстояний каждой из которых от двух данных точек есть величина постоянная. Простейшее (каноническое) уравнение гиперболы имеет вид:

(28)

Как видно, коэффициенты при х2 и у2 имеют разные знаки.

Числа а и b (а0 и b0) называются полуосями гиперболы.

Точки А1(а,0), А2(–а,0), В1(0,b) и В2(0,–b) называют вершинами гиперболы.

Построим прямоугольник со сторонами, проходящими через вершины А1, А2, В1, В2 параллельно координатным осям. Диагонали этого прямоугольника называют асимптотами гиперболы. Очевидно, уравнения асимптот и

Через вершины А1(а, 0) и А2(-а, 0) проведем теперь две симметричные относительно координатных осей ветви гиперболы так, чтобы по мере удаления от центра симметрии – точки О(0,0) – они приближались бы к асимптотам, но не пересекали бы их.

Рисунок - 40

Если же центр симметрии гиперболы расположен в точке С(х0, у0) и оси симметрии параллельны координатным осям, то уравнение гиперболы имеет вид:

,

Укажем, что гипербола является и графиком дробно-линейной функции .

Параболу в школьном курсе рассматривают как график квадратного трехчлена у=ах2+bх+с.

Выделяя из квадратного трехчлена полный квадрат, это уравнение легко привести к виду

(х–х0)2=2р(у–у0) (29)

Рисунок - 41

Здесь точка С(х0, у0) – вершина параболы, ось симметрии параллельна Оу. Коэффициент р(р>0) называют параметром параболы. Знак плюс перед коэффициентом 2р соответствует параболе, ветви которой направлены вверх, знак минус – вниз.

Можно рассмотреть параболу с осью симметрией, параллельной оси Ох. Ее уравнение имеет вид

(у–у0)2 = 2р  (х–х0). (30)

Рисунок- 42

Отметим, что уравнение параболы содержит квадрат только одной переменной: либо х (формула 29), либо у (формула 30).

Дадим определение, которое часто фигурирует как определение параболы.

Параболой называется множество точек плоскости, равноудаленных от данной прямой и от данной точки.

В заключение данного обзора кривых второго порядка отметим, что эти линии часто встречаются в различных вопросах естествознания. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий.

Оптические свойства эллипса, гиперболы и параболы широко используется в инженерном деле. В частности, оптические свойства параболы используется при конструировании прожекторов, антенн, телескопов.

Такие термины, как «эллиптическая орбита», «эллипсоид инерции», «параболическая траектория», «параболическое зеркало» и т. д., убеждают в широком применении кривых второго порядка.