
- •Естествознание-система наук о Природе. Цели, задачи естествознания.
- •Стадии становления. Роль естествознания в развитии общества.
- •История Естествознания. Естественно-научные революции-глобальные, комплексные, частные.
- •4. Этапы развития науки (классический, неклассический, остнеклассический).
- •6. Наука как система и её основные компоненты. Общенаучные знания.
- •Методы современных естественных наук. Суть научного метода, его основные характеристики.
- •Формы познания. Структура и методы естественно-научного познания.
- •Структурные уровни организации материи. Микро-, макро-, мега- мир. Корпускулярная и континуальная концепции описания природы.
- •Структурные уровни макромира. Вещество и поле – виды материи
- •Законы Ньютона. Закон всемирного тяготения.
- •Инерциальные и неинерциальные система отсчета.
- •Основные идеи сто, ото. Связь гравитации с пространством – временем.
- •Квантово – полевая модель мира. Корпускулярно – волновой дуализм в современной физике. Гипотеза де Бройля.
- •Принципы относительности Галилея и Эйнштейна.
- •Принцип симметрии, дополнительности, неопределенности, суперпозиции, соответствия, тождественности.
- •Свойства пространства, времени и законы сохранения.
- •Статистические и термодинамические свойства макросистем. Соотношение статистических и динамических закономерностей в Природе.
- •Структурные элементы микромира (атомы, ядра, элементарные частицы, молекулы, кварковая модель атома).
- •Развитие взглядов на природу света. Формула Планка. Фотон и его характеристики.
- •Элементарные частицы и их классификации.
- •Современные ускорители и детекторы элементарных частиц.
- •Парадокс времени в физике . Необратимые процессы и стрела времени.
- •Проблема создания единой фундаментальной теории
- •Важнейшие достижения современного естествознания .
- •Сверхпроводимость; втсп, перспективы их использования.
- •Новые вещества (фуллерены, нанотрубки, металлический водород, трансурановые элементы и т.Д. ).
- •31. Исследование по созданию разеров, гразеров и сверхмощных лазеров. Перспективы их использования.
- •32. Проблема управляемого термоядерного синтеза.
- •33. Перспективы развития компьютерных технологий.
- •34. История развития знаний о веществе. Фундаментальные законы о составе и свойствах вещества.
- •37. Запасы и потребление сырья. Металлы. Неметаллическое сырье. Природный газ. Углерод. Вторичное сырье. Нефть. Уголь. Биомасса. Древесина.
- •38. Новые химические элементы. Радиоактивные изотопы. Плазмохимические процессы. И прочее.
- •39. Зарождение живой материи. Основополагающие жизненные системы. Хиральность молекул живых организмов.
- •42. Современное представление о происхождении жизни. Химическая эволюция. Органогены. Биохимическая стадия развития жизни. Эволюция организмов. Многообразие форм жизни.
- •44. Геологические эры и эволюция жизни. Разновидности живых организмов. Особенности растительного и животного мира. Адаптация живых организмов. Взаимосвязь живых организмов.
- •47. Естественно-научное понимание энергии. Энергия – источник благосостояния. Способы преобразования энергии. Эффективность производства и потребления энергии.
- •48. Тепловые электростанции. Способы повышения эффективности энергосистемы. Парогазовые установки. Проблемы прямого преобразования энергии.
- •49. Водородные двигатели. Гидроэлектростанции. Приливные электростанции. Геотермальные источники энергии.
- •50. Перспективы развития гелиоэнергетики. Современная ветроэнергетика. Развитие атомной энергетики.
- •53. Глобальные катастрофы и эволюция жизни. Космическое и внутрипланетарное воздействие на биосферу. Преодоление экологической катастрофы.
- •54. Метрологические наблюдения. Климат в прошлом. Долгосрочные прогнозы. Равновесие климата.
- •55. Парниковый эффект и погода. Кислотные осадки. Разрушение озонового слоя и проблемы его сохранения. Водные ресурсы. Способы сохранения водных ресурсов.
- •57. Человек и природа.
-
Структурные уровни организации материи. Микро-, макро-, мега- мир. Корпускулярная и континуальная концепции описания природы.
Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.
В науке выделяются три уровня строения материи:
-
Макромир - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
-
Микромир — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 сек.
-
Мегамир — мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.
С древнейших времен существовали два противоположных представления о структуре материального мира. Одно из них - континуальная концепция Анаксагора - Аристотеля - базировалось на идее непрерывности, внутренней однородности, "сплошности" и, по-видимому, было связано с непосредственными чувственными впечатлениями, которые производят вода, воздух, свет и т.п. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя не оставляет пустоты внутри себя.
Другое представление - атомистическая (корпускулярная) концепция Левкиппа - Демокрита - было основано на дискретности пространственно-временного строения материи, "зернистости" реальных объектов и отражало уверенность человека в возможность деления материальных объектов на части лишь до определенного предела - до атомов1, которые в своем бесконечном разнообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира.
-
Структурные уровни макромира. Вещество и поле – виды материи
Макромир - мир макрообъектов, размерность которых соотносится с масштабами человеческого опыта. Макромир имеет несколько уровней организации (физический, химический, биологический и социальный).
Как физический уровень организации макромира, так и химический уровень имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ.
На биологическом уровне организации макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые достигают огромной величины, например аксоны нейронов осьминогов длинной в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и органеллы в свою очередь состоят из гигантских молекул (белков, липидов и др.), а эти молекула состоят из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки - это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера.
На социальном уровне организации макромира (обществе) также различаются различные уровни организации. Так, личность - индивидуальная социальность; семья, рабочий коллектив - межиндивидуальная социальность. Как индивидуальная социальность, так и межиндивидуальная социальность - микроуровни общества. Само общество и государство - это надындивидуальная социальность - макроуровень.
Вещество и поле - фундаментальные физические понятия, обозначающие два основных вида материи на макроскопическом уровне: вещество - совокупность дискретных образований, обладающих массой покоя (атомы, молекулы и то, что из них построено); поле - вид материи, характеризующейся непрерывностью и имеющей нулевую массу покоя (электромагнитное поле и поле тяготения - гравитационное). Открытие поля как вида материи имело огромное философское значение, так как обнаружило несостоятельность метафизического отождествления материи с веществом. На субатомном уровне (то есть на уровне элементарных частиц) различие вещества и поля становится относительным. Поля (электромагнитное и гравитационное) утрачивают чисто непрерывный характер: им необходимо соответствуют дискретные образования - кванты (фотоны и гравитоны). А элементарные частицы, из которых состоит выщество - протоны, нейтроны, электроны, мезоны и т. д. - выступают как кванты соответствующих нуклонных, мезонных и других полей и утрачивают свой чисто дискретный характер. Неправомерно на субатомном уровне различать вещество и поле и по наличию или отсутствию массы покоя, так как нуклонные, мезонные и прочие поля обладают массой покоя. В современной физике поля и частицы выступают как две неразрывно связанные стороны микромира, как выражение единства корпускулярных (дискретных) и волновых (континуальных, непрерывных) свойств микрообъектов. Представления о поле выступают также как основа для объяснения процессов взаимодействия, воплощая принцип близкодействия.