Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Естествознание.docx
Скачиваний:
30
Добавлен:
25.12.2018
Размер:
183.25 Кб
Скачать
  1. Современные ускорители и детекторы элементарных частиц.

Элементарные частицы — мельчайшие известные частицы материи.

В современных ускорителях вместо неподвижной мишени часто ис-

пользуется встречный ускоренный пучок частиц. Подобные ускорители

на встречных пучках называются коллайдерами. К настоящему времени

построено несколько коллайдеров: в США, Японии, Германии и в Евро-

пейской организации ядерных исследований (ЦЕРН) в Швейцарии.

В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях – для исследования субъядерных процессов и свойств элементарных частиц

В зависимости от типа ускоряемых частиц различают протонные и электронные ускорители. Кроме того, ускорители бывают кольцевые и линейные.

В кольцевых ускорителях, вдоль всего кольца, в котором, движутся разгоняемые заряженные частицы и из которых откачан воздух, стоят электромагниты. Чем сильнее магнитное поле, тем более энергичные частицы могут быть удержаны внутри кольца (камеры). Разгоняются частицы при помощи электрического поля в ускоряющих промежутках, которые расположены вдоль кольца. В кольцевом ускорителе, где частица может многократно пролететь вдоль кольца. пока не наберет нужную энергию, электрическое поле может быть не очень сильным. В линейном ускорителе (принципиальная схема которого приведена на Рис. 7), напротив, ускоряющие электрические потенциалы должны быть предельно высокими, потому что частица должна набрать всю свою энергию за один пролет. (Линейные ускорители используются также и для получения высокоэнергичных пучков ионов и ядер.)

Один из самых больших действующих линейных ускорителей (SLAC) расположен в Станфорде (вблизи Сан-Франциско, США). 

Детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров элементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.

 Основными требованиями, предъявляемыми к современному детектору для экспериментов на ускорителе являются:

  • Высокая эффективность (малый процент потерянных частиц или частиц с плохо определенными параметрами)

  • Способность к разделению различных типов частиц, образующихся в распаде (пионов, каонов, протонов и т. д.)

  • Способность точного измерения импульса заряженных частиц для восстановления инвариантной массы нестабильных состояний.

  • Способность точного измерения энергии фотонов.

  1. Парадокс времени в физике . Необратимые процессы и стрела времени.

Парадокс времени не существует сам по себе. С ним тесно связаны два других парадокса: "квантовый парадокс" и "космологический парадокс". Между парадоксом времени и квантовым парадоксом существует тесная аналогия. Сущность квантового парадокса заключается в том, что ответственность за коллапс несет наблюдатель и производимые им наблюдения. Следовательно аналогия между двумя парадоксами заключается в том, что человек отвечает за все особенности, связанные со становлением и событиями в нашем физическом описании. Теперь, надо отметить третий парадокс – космологический парадокс. Современная космология приписывает нашей вселенной возраст. Вселенная родилась в результате большого взрыва около 15 млрд. лет назад. Ясно, что это было событием. Но в традиционную формулировку понятий законов природы события не входят. Это и поставило физику на грань величайшего кризиса.

Стрела времени - однонаправленность времени в известном нам мире. Иногда эту однонаправленность трактуют как нарушение обратимости времени. Это ошибочная трактовка. Асимметрия реального мира не есть нарушение симметрии законов физики. Точно так же как дисимметрия живой природы или асимметрия спиральности галактик не может трактоваться как нарушение Р-симметрии законов природы. Законы лишь утверждают, что возможен другой мир симметричный нашему реальному миру (мир с противоположно направленной асимметрией). Кроме того, результаты Н.А.Козырева по обнаружению сигнала от прошлого и будущего положения звезды можно рассматривать как экспериментальное подтверждение существования мира с противоположной направленностью времени.

Необратимые процессы - физические процессы, которые могут самопроизвольно протекать только в одном определённом направлении. К ним относятся: процессы диффузии, теплопроводности, термодиффузии, и т.п. Все необратимые процессы являются неравновесными процессами. В замкнутых системах необратимые процессы сопровождаются возрастанием энтропии. В открытых системах при необратимых процессах энтропия может оставаться постоянной или даже убывать за счёт обмена энтропией с внешней средой. Необратимые процессы изучаются термодинамикой неравновесных процессов и статистической теорией неравновесных процессов.

  1. Сильнонелинейные явления. Солитоны. Порядок и беспорядок в природе. Хаос. Аттракторы, странные аттракторы. Принцип возрастания энтропии. Синергетика, теория самоорганизации. Связь между энтропией, энергией и информацией.

Солитон — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде. Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а двигаются, сохраняя свою структуру неизменной. Это свойство может использоваться для передачи данных на большие расстояния без помех.

Синергетика. В конце XX века все большее развитие получает синергетика — наука о сложном, о том, как в хаосе устанавливается определенный порядок, который, однако, рано или поздно разрушается. Синергетика – междисциплинарное направление научных исследований, возникшее в начале 70-х г.г. и ставящее в качестве своей основной задачи познание общих закономерностей и принципов, лежащих в основе процессов самоорганизации в системах самой разной природы: физических, химических, биологических технических, экономических, социальных.

Под самоорганизацией в синергетике понимаются процессы возникновения макроскопически упорядоченных пространственно временных структур в сложных нелинейных системах. Система под воздействием самых незначительных воздействии, или флуктуации, может резко изменить свое состояние. Этот переход часто характеризуют как возникновение порядка из хаоса. Интересно, что как в установлении, так и в разрушении порядка огромную роль играют маленькие воздействия (флуктуации). Смена режимов устойчивости и неустойчивости происходит в системах, где есть подвод вещества, энергии и информации. Синергетика выявляет пути зарождения в хаосе порядка, его поддержания и распада.

Представьте себе нагрев воды в кастрюле. За счет подвода энергии вода начинает нагреваться, появляются пузырьки воздуха в воде. А возникают они на случайных местах, в силу случайностей. Но если пузырек образовался, то в уже достаточно нагретой воде он увеличивается в размерах и поднимается к поверхности воды, где лопается. При нагревании воды хаотичность движения ее молекул возрастает, но именно в этом хаосе устанавливается порядок, развивается история капель, наполненных водяными парами. Язык — это шум, хаос, в котором есть порядок.

Исходя из успехов синергетики ученые объясняют возникновение и развитие упорядоченных систем перестройкой хаоса. Все возникает из хаоса. Поскольку система «забывает» свои прошлые состояния, то неизвестно, что было до хаоса и в принципе это невозможно узнать.

Cинергетику можно считать наиболее полной, интегральной теорией порядка и хаоса потому, что она исследует различные фазы (уровни) порядка и проявления различной роли хаоса на этих этапах порядкообразования.

Предмет же синергетики охватывает все этапы универсального процесса самоорганизации как процесса эволюции порядка - его возникновения, развития, самоусложнения и разрушения, т.е. весь цикл развития системы в аспекте ее структурного упорядочения.

Принцип возрастания энтропии. Всякие естественные процессы сопровождаются возрастанием энтропии Вселенной; такое утверждение часто называют принципом энтропии. Также энтропия характеризует условия, при которых запасается энергия. Возрастание энтропии является характерным признаком естественных процессов и соответствует запасанию энергии при более низких температурах.

Такое истолкование связи энергии и энтропии, при котором энтропия характеризует условия запасания и хранения энергии, имеет большое практическое значение. Первое начало термодинамики утверждает, что энергия изолированной системы (а возможно, и всей Вселенной) остается постоянной. Поэтому, сжигая ископаемое топливо - уголь, нефть, уран - мы не уменьшаем общих запасов энергии. Любое действие приводит к понижению качества энергии Вселенной. Поскольку в промышленно развитом обществе процесс использования ресурсов стремительно ускоряется, то энтропия Вселенной неуклонно возрастает.

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе.

  1. Современные концепции космологии. Концепции развития и эволюции Вселенной. Структура Вселенной. Модели Вселенной. Современные средства наблюдения объектов Вселенной. Проблема поиска внеземных цивилизаций.

Астрономические тела обладают тенденцией группироваться в системы. Звезды могут образовывать пары, входить в состав звездных скоплений или ассоциаций. Крупнейшими объединениями звезд являются галактики. Но и они редко наблюдаются одиночными. Более 90 % ярких галактик входят либо в небольшие группы, содержащие лишь несколько крупных членов (такова, например, местная группа галактик), либо в скопления, в которых их насчитывается многие тысячи. В свою очередь, группы и скопления часто образуют сверхскопления, содержащие по нескольку крупных групп или скоплений вместе с отдельными галактиками и облаками газа. Но на скоплениях и сверхскоплениях иерархия космических структур обрывается.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной.

В 1917 году были предложены модели стационарной Вселенной, однако уже в 1922 г. российский математик и геофизик Л. А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы. Расширение Вселенной считается научно установленным фактом. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

Американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии - модели "горячей Вселенной". Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала. При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К. Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом.

  1. Фундаментальные взаимодействия в природе. Гравитационное, электромагнитное, слабое, сильное взаимодействие. Обменный характер взаимодействий. Проблема создания единой теории взаимодействия. Близкодействие и дальнодействие.

Фундаментальные взаимодействия:

Гравитационное взаимодействие. Это взаимодействие носит универсальный характер, в нем участвуют все виды материи, все объекты природы, все элементарные частицы. Гравитация определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяжения. Согласно общей теории относительности, гравитация связана с кривизной пространства-времени и описывается в терминах так называемой римановой геометрии.

Слабое взаимодействие. Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. С точки зрения квантовой теории переносчиком электромагнитного взаимодействия является элементарная частица фотон.

Сильное взаимодействие. Сильное взаимодействие ответственно за устойчивость атомных ядер. Поскольку атомные ядра большинства химических элементов стабильны, то ясно, что взаимодействие, которое удерживает их от распада, должно быть достаточно сильным.

В настоящее время созданы модели единой теории электрослабого и сильного взаимодействий, получившие название модели великого объединения. Характерная энергия объединения оказывается порядка 1015 ГэВ, что значительно превосходит характерную энергию объединения электромагнитных и слабых взаимодействий. Отсюда вытекает, что прямое экспериментальное исследование великого объединения выглядит проблематичным даже в достаточно отдаленном будущем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]