
- •Естествознание-система наук о Природе. Цели, задачи естествознания.
- •Стадии становления. Роль естествознания в развитии общества.
- •История Естествознания. Естественно-научные революции-глобальные, комплексные, частные.
- •4. Этапы развития науки (классический, неклассический, остнеклассический).
- •6. Наука как система и её основные компоненты. Общенаучные знания.
- •Методы современных естественных наук. Суть научного метода, его основные характеристики.
- •Формы познания. Структура и методы естественно-научного познания.
- •Структурные уровни организации материи. Микро-, макро-, мега- мир. Корпускулярная и континуальная концепции описания природы.
- •Структурные уровни макромира. Вещество и поле – виды материи
- •Законы Ньютона. Закон всемирного тяготения.
- •Инерциальные и неинерциальные система отсчета.
- •Основные идеи сто, ото. Связь гравитации с пространством – временем.
- •Квантово – полевая модель мира. Корпускулярно – волновой дуализм в современной физике. Гипотеза де Бройля.
- •Принципы относительности Галилея и Эйнштейна.
- •Принцип симметрии, дополнительности, неопределенности, суперпозиции, соответствия, тождественности.
- •Свойства пространства, времени и законы сохранения.
- •Статистические и термодинамические свойства макросистем. Соотношение статистических и динамических закономерностей в Природе.
- •Структурные элементы микромира (атомы, ядра, элементарные частицы, молекулы, кварковая модель атома).
- •Развитие взглядов на природу света. Формула Планка. Фотон и его характеристики.
- •Элементарные частицы и их классификации.
- •Современные ускорители и детекторы элементарных частиц.
- •Парадокс времени в физике . Необратимые процессы и стрела времени.
- •Проблема создания единой фундаментальной теории
- •Важнейшие достижения современного естествознания .
- •Сверхпроводимость; втсп, перспективы их использования.
- •Новые вещества (фуллерены, нанотрубки, металлический водород, трансурановые элементы и т.Д. ).
- •31. Исследование по созданию разеров, гразеров и сверхмощных лазеров. Перспективы их использования.
- •32. Проблема управляемого термоядерного синтеза.
- •33. Перспективы развития компьютерных технологий.
- •34. История развития знаний о веществе. Фундаментальные законы о составе и свойствах вещества.
- •37. Запасы и потребление сырья. Металлы. Неметаллическое сырье. Природный газ. Углерод. Вторичное сырье. Нефть. Уголь. Биомасса. Древесина.
- •38. Новые химические элементы. Радиоактивные изотопы. Плазмохимические процессы. И прочее.
- •39. Зарождение живой материи. Основополагающие жизненные системы. Хиральность молекул живых организмов.
- •42. Современное представление о происхождении жизни. Химическая эволюция. Органогены. Биохимическая стадия развития жизни. Эволюция организмов. Многообразие форм жизни.
- •44. Геологические эры и эволюция жизни. Разновидности живых организмов. Особенности растительного и животного мира. Адаптация живых организмов. Взаимосвязь живых организмов.
- •47. Естественно-научное понимание энергии. Энергия – источник благосостояния. Способы преобразования энергии. Эффективность производства и потребления энергии.
- •48. Тепловые электростанции. Способы повышения эффективности энергосистемы. Парогазовые установки. Проблемы прямого преобразования энергии.
- •49. Водородные двигатели. Гидроэлектростанции. Приливные электростанции. Геотермальные источники энергии.
- •50. Перспективы развития гелиоэнергетики. Современная ветроэнергетика. Развитие атомной энергетики.
- •53. Глобальные катастрофы и эволюция жизни. Космическое и внутрипланетарное воздействие на биосферу. Преодоление экологической катастрофы.
- •54. Метрологические наблюдения. Климат в прошлом. Долгосрочные прогнозы. Равновесие климата.
- •55. Парниковый эффект и погода. Кислотные осадки. Разрушение озонового слоя и проблемы его сохранения. Водные ресурсы. Способы сохранения водных ресурсов.
- •57. Человек и природа.
47. Естественно-научное понимание энергии. Энергия – источник благосостояния. Способы преобразования энергии. Эффективность производства и потребления энергии.
Естественно-научное понимание энергии. Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Превращение энергии подчиняется фундаментальному закону сохранения, из которого следует невозможность создания вечного двигателя.
Работоспособность тела, т. е. способность его совершать определенную работу при переходе из одного состояния в другое, определяется энергией. Различным формам физического движения соответствуют различные виды энергии: механическая, тепловая, химическая, электромагнитная, гравитационная, ядерная и т. д. Энергия характеризует способность материальных объектов совершать работу, а работа производится при действии на объект физической силы. Уровень развития современного общества во многом определяется производством и потреблением энергии.
Энергия - источник благосостояния. Стремление обладать источником энергии (обычно нефти) приводит к возникновению войн. Развитие экономики, уровень материального благосостояния, людей находится в прямой зависимости от количества потребляемой энергии. Природные энергоресурсы могут быть одним из основных источников процветания жизни.
Ученые, инженеры еще с давних времен занимаются поиском новых, нетрадиционных источников, которые могли бы обеспечить человечество энергией. Возможны разные пути решения данной проблемы. Самый очевидный путь – использование вечных, возобновляемых источников энергии – энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, Солнца. Можно назвать еще один заманчивый путь – управляемый термоядерный синтез, над освоением которого усердно работают ученые многих стран.
Способы преобразования энергии. Можно назвать три основных способа преобразования энергии. Первый из них заключается в получении тепловой энергии при сжигании топлива (ископаемого или растительного происхождения) и потреблении ее для непосредственного обогревания жилых домов, школ, предприятий и т. п. Второй способ – преобразование заключенной в топливе тепловой энергии в механическую работу, например, при использовании продуктов перегонки нефти для обеспечения движения различного оборудования, автомобилей, тракторов, поездов, самолетов и т. д. Третий способ – преобразование тепла, высвобождающегося при сгорании топлива или деления ядер, в электрическую энергию с последующим ее потреблением либо для производства тепла, либо для выполнения механической работы.
Эффективность производства и потребления энергии. Долгое время невысокая эффективность преобразования тепловой энергии в полезную работу связывалась с несовершенством самого механизма преобразования. С развитием термодинамики стало ясно, что существует ограничение полного преобразования всей тепловой энергии в полезную работу.
Такое ограничение следует из фундаментальных законов термодинамики и обусловливается необратимостью тепловых процессов. Повышение энергетического КПД процессов и аппаратов – одна из важнейших задач совершенствования химической технологии. Возможны разные способы ее решения – улучшение условий химических реакций, уменьшение числа стадий технологического процесса, осуществление реакций при невысоких, т. е. обычных температурах и давлениях, приближение химических процессов к биологическим и, наконец, разработка новых технологических приемов.