- •1)Организация питания эвм. Роль заземления аппаратуры.
- •2)Особенности архитектуры cis, risc микропроцессоров.
- •3)Источники бесперебойного питания. Структурные схемы OnLine и StandBy ups.
- •4)Команды процессора, цикл выполнения команд
- •5)Архитектура компьютера. Основные компоненты эвм - их роль и взаимодействие.
- •6)Организация хранения данных во внешних магнитных дисках
- •7)Электронные компоненты, применяемые в эвм. Триггер. Регистр, мультиплексор, коммутатор, счетчик, сумматор, компаратор.
- •9)Назначение bios. Основные разделы bios.
- •10) Типы файловых систем внешних магнитных дисков. Влияние размера кластера на работу диска.
- •11) Физические принципы записи информации в магнитных дисках. Эффект суперпармагнетизма.
- •12)Устройство ввода информации - мышь. Принципы функционирования.
- •Оптические мыши первого поколения
- •Оптические мыши второго поколения
- •Лазерные мыши
- •Индукционные мыши
- •Инерционные мыши
- •Гироскопические мыши
- •Мыши с mems-датчиками
- •13)Команды эвм. Машинные коды и команды ассемблера. Функциональные группы команд.
- •Достоинства языка ассемблера
- •Недостатки языка ассемблера
- •14) Организация raid массивов. Основная цель организации и способы реализации.
- •15) Электронные компоненты, применяемые в эвм. Триггер. Регистр, мультиплексор, коммутатор, счетчик, сумматор, компаратор.
- •16) Типы файловых систем внешних магнитных дисков
- •17)Стадии выполнения команды с точки зрения взаимодействия процессора и памяти.
- •Конвейерная архитектура
- •Параллельная архитектура
- •18)Интерфейсы рс. Основные группы сигналов и их назначение.
- •19)Динамическая память. Принцип функционирования sdram, ddr sdram, ddr2 sdram. Основные параметры.
- •20) Арбитраж в интерфейсах. Основные типы арбитража и способы выполнения..
- •21) Понятие кэш-памяти. Принцип функционирования.
- •22)Стандарт rs-232. Принцып обмена информацией. Режимы обмена данными.
- •23)Виртуальная память. Принцип работы.
- •24)Параллельный порт рс. Основные регистры. Способ организации обмена информацией.
- •25)Программные и аппаратные прерывания.
- •26)Дисковые накопители. Принцип функционирования. Типы разметки поверхности магнитного диска. Параметры диска.
- •27)Cd-rom. Dvd-rom br диски. Принципы функционирования.
- •28)2D и 3d графические ускорители. Эффекты, реализуемые на аппаратном уровне в 3d графическом процессоре.
- •29)Принцип функционирования crt мониторов. Основные типы, особенности и характеристики. Достоинства и недостатки
- •30)Функционирование компьютера с точки зрения взаимодействия с данными..
- •31)Электронные компоненты, применяемые в эвм. Триггер. Регистр, мультиплексор, коммутатор, счетчик, сумматор, компаратор.
- •32)Звуковые контроллеры. Блок-схема. Принципы функционирования
- •33)Последовательная шина usb. Принципы функционирования.
- •34. Конвейерная архитектура процессора. Принцип функционирования. Факторы снижающие эффективность конвейерной архитектуры.
- •35. Принципы функционирования струйных принтеров.
- •36. Параллельная архитектура
- •37Принципы функционирования лазерных принтеров.
- •38. Суперскалярная архитектура.
- •39. Стандарты mpeg
- •40. Кэш. Цели и задачи. Способы замещения данных.
- •41)Организация кластера эвм. Преимущества кластерной организации многомашинного комплекса
- •42)Триггер. Таблица истинности. Одно и двухпортовая ячейка статической памяти.
- •43. Основные характеристики динамической памяти. Тайминги.
- •44. Принцип функционирования жидкокристаллического монитора. Типы жидкокристаллических мониторов. Особенности и характеристики. Достоинства и недостатки.
- •45. Принцип функционирования плазменного монитора. Особенности и характеристики. Достоинства и недостатки
- •46)Организация хранения данных на магнитных дисках
- •47)Методы повышения надежности магнитных дисков
- •48)Основные особенности системной шины pci. Сравнение с pci-express.
- •49. Организация прерываний.
- •50. Адресация пк в защищенном режиме.
- •51. Архитектура системы команд стекового типа
- •52. Архитектура системы команд аккумуляторного типа
- •53. Архитектура системы команд регистрового типа
- •54. Преобразование логического адреса в физический
- •55. Преобразование логического адреса в линейный
- •56)Режимы работы процессора с архитектурой х86
- •57. Принципы функционирования dlp Проекторов. Преимущества и недостатки.
- •58. Основные этапы развития вычислительной техники
36. Параллельная архитектура
Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана.
Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными. Параллельные процессоры используются в суперкомпьютерах.
Возможными вариантами параллельной архитектуры могут быть (по классификации Флинна): SISD - один поток команд, один поток данных; SIMD - один поток команд, много потоков данных; MISD - много потоков команд, один поток данных; MIMD - много потоков команд, много потоков данных.
37Принципы функционирования лазерных принтеров.
Принцип печати:
Данные из компьютера поступают принтер. Тонкий луч лазера светит на зеркало, которое вращается с высокой скоростью. Отраженный луч через систему зеркал и призму попадает на барабан. Точки, которые на бумаге должны получиться темными, разряжаются светом лазерного луча. Заряды на освещенных течках поверхности барабана нейтрализуются благодаря фотопроводящим свойствам барабана. Таким образом, на поверхности барабана формируется скрытое электростатическое изображение.
Затем на фотобарабан наносится тонер — мельчайший красящий порошок. Так как тонер и фотобарабан заряжены отрицательно, то частицы тонера притянутся только к разряженным лазером областям фотобарабана. Специальное плавающее (как в бритвах) резиновое лезвие счищает излишки тонера.
Далее участок барабана с тонером прокатывается по листу бумаги, который подается снизу еще одним валиком, тоже заряженным. Электростатическое поле переносит тонер на лист бумаги, после чего лист прокатывается между двух нагретых до 200 градусов барабанов.При такой температуре частицы тонера намертво вплавляются в бумагу.
Внизу, рядом с подающим бумагу валиком, расположена мощная лампа вытянутой формы. Она нужна для того, чтобы поддерживать на подающем валике постоянный заряд. Этот заряд притягивает частицы тонера и способствует переносу изображения с фотобарабана на бумагу.
Еще одно лезвие и валик готовят фотобарабан к следующему рабочему циклу: счищают остатки использованного тонера и заново заряжают барабан.
38. Суперскалярная архитектура.
ССА – это способность выполнения нескольких машинных инструкций за один такт процессора. Существенно увеличивает производительность.
Матричный процессор (array processor) состоит из большого числа процессоров, выполняющих одну и ту же последовательность команд применительно к разным наборам данных. Первым в мире таким процессором был ILLIAC IV.
Векторный процессор (vector processor). Как и матричный, он чрезвычайно эффективен при выполнении последовательности операций над парами элементов данных. Однако в отличие от матричного процессора, все операции сложения выполняются в одном блоке, имеющем конвейерную структуру.
Оба типа процессоров работают с массивами данных. Система из нескольких параллельных процессоров, имеющих общую память, называется мультипроцессором.
Мультипроцессоры с небольшим числом процессоров (< 256) разрабатывать достаточно просто. Создание больших мультипроцессоров сложно, т.к. их надо связать с общей памятью. Поэтому многие разработчики отказались от идеи разделения памяти и стали создавать системы без общей памяти, состоящие из большого числа взаимосвязанных компьютеров, у каждого из которых имеется собственная память. Такие системы называются мультикомпьютерами.
