Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экология вопросы.docx
Скачиваний:
29
Добавлен:
21.12.2018
Размер:
186.51 Кб
Скачать

39. Экологические аспекты аэс.

Воздействия АЭС на среду:

  • разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе);

  • изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию;

  • изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов;

  • не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

40. Какой из видов топлива (твердое, жидкое и газообразное) более экологично? Ответ обоснуйте.

Международная группа ученых показала, каким образом сырая нефть в месторождениях по всему миру – включая нефтеносные пески в Канаде – естественным образом преобразуется анаэробными бактериями в метан. Проведя серию микробиологических исследований и лабораторных экспериментов, д-р Стив Лартер (Steve Larter) из университета Калгари и его коллеги продемонстрировали анаэробную деградацию углеводородов с образованием метана. По мнению исследователей, этот процесс может революционизировать нефтедобывающую промышленность. Он позволит отказаться от дорогостоящих технологий подогрева и перекачки нефти. Кроме того, метан является более энергетически эффективным и экологичным топливом. Ученые планируют начать полевые испытания нового метода в 2009 году. Исследователи также обнаружили промежуточный шаг процесса биодеградации, в котором участвуют микроорганизмы, превращающие частично деградированную нефть в углекислый газ и водород с последующим образованием метана. Ученые считают, что эти микроорганизмы могут использоваться для удаления и связывания углекислого газа из атмосферы.

Солнечная энергия.

Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. Технический потенциал солнечной энергии приблизительно в 2 раза выше сегодняшнего потребления топлива.

В последнее время интерес к проблеме использования солнечной энергии резко возрос. И хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас отдельно рассмотреть возможности использования солнечной энергии.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0,0125 % количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5 % - полностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Солнечная энергетика относится к наиболее материалоемким видам производства энергии.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

ФОТОЭНЕРГЕТИКА.

Начиная с 70-х годов правительства индустриальных стран израсходовали биллион долларов на разработки фотоэлектрических преобразователей. За последние 10 лет стоимость фотоэлектрических преобразователей снизилась. В Японии ежегодно выпускается 100 млн. калькуляторов общей мощностью 4 МВт, что составляет 7% мировой торговли фотоэлектрическими преобразователями. Более 20 тыс. домов в Мексике, Индонезии, Южной Африке, Шри-Ланке и в других развивающихся странах используют фотоэлектрические системы, смонтированные на крышах домов, для получения электроэнергии для бытовых целей. Наилучшим примером использования таких систем является Доминиканская республика, где 2 тыс. домов имеют фотоэлектрические установки, сконструированные в последние 9 лет. Стоимость такой установки 2 тыс. дол.

Итак, фотоэнергетика может стать ведущим источником энергии мировой большой индустрии. Это подтверждают сделанные разработки, считают эксперты. В результате создания новых технологий и повышения технического уровня продукции может быть преодолен барьер для внедрения фотоэлектрических систем, связанный с высокой их стоимостью.

ПРОМЫШЛЕННЫЙ ФОТОСИНТЕЗ

По масштабам использования солнечной энергии нам еще далеко до растений. Ежегодно в деревьях, кустарниках, траве, водорослях накапливается большое количество законсервированной с помощью фотосинтеза энергии. Это в 10 раз больше того, что тратится за тот же срок человечеством. Заманчиво, конечно, использовать с живой фотохимический потенциал. Однако не губить же зеленые богатства планеты? Нужно создавать в энергетические плантации. В будущем, видимо, после решения продовольственной проблемы быстрорастущие виды растений станут высаживать специально «на откорм» микроорганизмам и в результате их жизнедеятельности получат ценное топливо - метан. Впрочем, КПД фотосинтеза растений очень мал - в среднем 0,1 %. Есть другие перспективные направления биогелиоэнергетики. Например, несколько лет назад открыто явление биофотолиза - разложение воды на водород и кислород под действием солнечного света при активном посредничестве выделенных из растений фотосинтезирующих веществ. Другой необходимый компонент - фермент гидрогенеза, имеющий сродство к атомам водорода. Именно он «убеждает» фотосинтезирующие вещества приступить к гидролизу. Задача исследователей - научиться создавать условия, при которых этот процесс идет стабильно. Ведь изъятые из клетки хлоропласты быстро разрушаются на свету.

Довольно хорошо отработаны микробиологические способы разложения воды. Открыты и уже используются микроорганизмы, результат жизнедеятельности которых - водород. В специальных емкостях для них размножают корм - микроскопические водоросли определенных видов. Водоросли поглощают солнечный свет, осуществляют фотосинтез, а микроорганизмы, поедающие их, разлагают воду, выделяют водород. Водород - это экологически чистое химическое топливо. При его сгорании получается исходный продукт - вода. Энергетический круговорот воды может продолжаться до тех пор, пока светит Солнце.

Энергия ветра.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры - от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки - привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Особо следует отметить, что в странах Европы, Америки, в Японии развитие ветроэнергетики идет на фоне сильной и стабильной экономики, при избытке традиционной генерирующей мощности, отсутствии энергетического кризиса.

Валовой потенциал ветровой энергии примерно 80 трлн. кВт/ч в год. Эта величина существенно больше соответствующих величин технического потенциала органического топлива.

Таким образом, потенциала солнечной радиации и ветровой энергии в принципе достаточно для нужд энергопотребления, как страны, так и регионов. К недостаткам этих видов энергии можно отнести нестабильность, цикличность и неравномерность распределения по территории; поэтому использование солнечной и ветровой энергии требует, как правило, аккумулирования тепловой, электрической или химической. Однако, возможно создание комплекса электростанций, которые отдавали бы энергию непосредственно в единую энергетическую систему, что дало бы огромные резервы для непрерывного энергопотребления.

Тепловая энергия воды.

В перспективе можно использовать для получения электроэнергии разность температуры слоев воды в океане, которая может достигать 20°С.

Станции на этой основе (ОТЭС) находятся в разработке. Первый вариант подобной установки мощностью 5 МВт проектируется в Израиле. Меньшие по мощности установки действуют в Австралии, Калифорнии и ряде других стран. Основная сложность перспективы их использования - низкая экономичность и как следствие отсутствие коммерческого интереса.

Энергия рек

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода, так как около 3/4 поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек. Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье (в виде водяной турбины). Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Можно считать, что современная гидроэнергетика родилась в 1891 году.

Преимущества гидроэлектростанций очевидны: постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия Земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится: нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т условного топлива, что в 1700 раз больше мировых геологических запасов органического топлива. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 км от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.