Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamen_po_himii_shpory.docx
Скачиваний:
6
Добавлен:
20.12.2018
Размер:
142.16 Кб
Скачать

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя.

Билет №55

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации Kd определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:

Значение Kd зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:

где средний коэффициент активности электролита.

55.1

Поскольку электролитическая диссоциация - процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой альфа α).

Степень диссоциации - это отношение числа распавшихся на ионы моле кул N' к общему числу растворенных молекул N:

Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.

Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение темпера туры. По степени диссоциации электролиты делят на сильные и слабые.

Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита - уксусной кислоты:

СН3СООН СНзСОO-+ Н+

При разбавлении раствора уксусной кислоты водой равновесие смес тится в сторону образования ионов, - степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты - степень диссоциации умень шается.

55.2

Сила электролитов.

Силу электролитов можно охарактеризовать с помощью степени диссоциации.

Степень диссоциации электролита-это частное от деления числа продиссоциированных молекул к общему числу молекул электролита, введённого в раствор.

α=Nдисс/N

Степень диссоциации потенциальных электролитов изменяется в пределах 0< α ≤1( значение α=0 относится к неэлектролитам).

Степень диссоциации возрастает при увеличении разбавления раствора, а также при повышении температуры ( повышение температуры приводит к увеличению кинетической энергии растворённых частиц, что способствует распаду молекул на ионы.)

Сила электролитов в водном растворе определяется их степенью диссоциации при постоянной концентрации и температуре. К сильным электролитам относятся относятся вещества степень диссоциации которых близка к 1. К ним относятся хорошо растворимые щёлочи, соли, кислоты.

Билет №56

Коллигативные свойства растворов это те их свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения.

коллигативные свойства разбавленных растворов неэлектролитов.

Что называется коллигативными свойствами растворов. К каким растворам применимы простые соотношения, приведенные в настоящей главе.

Как объяснить коллигативными свойствами растворов то, что антифриз, используемый для предотвращения замерзания воды в радиаторе автомобиля, предотвращает также закипание там воды в жаркую погоду.

Мы можем допустить коллигативные свойства, предполагая существование самостоятельных атомных групп, деятельность которых зависит только от их числа, а не от химической природы, таким образом коллигативные свойства приводят нас к молекулярной теории [ там же, стр. Типом таких свойств может служить объем тела в газообразном или парообразном соединении [ там же, стр.

Как правило, коллигативные свойства проявляются, когда в равновесии находятся две фазы, одна из которых содержит растворитель и растворенное вещество, а вторая - только растворитель.

56.1

Вант-Гоффа закон осмотического давления, определяет давление молекул растворённого вещества на полупроницаемую перепонку, отделяющую раствор от чистого растворителя и непроницаемую для растворённого вещества.

Билет №58

Растворы электролитов, содержат в заметных концентрациях ионы-катионы и анионы. образующиеся в результате электролитической диссоциации молекул растворенного вещества. Р-ритель (чистый или смешанный) обычно в сколько-нибудь значит. степени не диссоциирован. Р. э. обладают способностью проводить электрич. ток и относятся к проводникам второго рода. Благодаря увеличению общего числа частиц коллигативные свойства бесконечно разбавленных растворы электролитов (т. е. свойства, зависящие только от концентрации растворенного вещества, но не от его природы) существенно отличаются от тех же свойств растворов неэлектролитов. Этим, в частности, объясняется увеличение осмотич. давления в сравнении со значением, предсказываемым законом Вант-Гоффа (см. Осмос), понижение давления пара растворителя над раствором в сравнении с предсказываемым Рауля законом и др. Наличием ионов обусловлены также классификация растворы электролитов, особенности теоретич. подходов в сравнении с др. классами растворов. Наиб. изучены водные растворы электролитов, играющие важную роль во многих биол., геол. и техн. процессах. Неводные растворы электролитов служат средой для проведения синтеза и электрохим. процессов, используются в совр. технологиях (создание новых химических источников тока, солнечных батарей, процессы разделения веществ и др.).

58.1

Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы:

где solut. - данный раствор, nel. solut. - раствор неэлектролита той же концентрации, Tbp - температура кипения, а Tmp - температура плавления (замерзания).

Билет №59

Термин "электролитическая диссоциация" предложен Аррениусом в 1887 г. В электролитах, растворенных в воде и в некотор. других растворителях, Аррениус предложил признать особое распадение молекулы на ионы, заряженные положительным и отрицательным электричеством, и назвал это распадение электролитической диссоциацией

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ , полный или частичный распад молекул растворенного в-ва на катионы и анионы. Э. д. называют также распад на катионы и анионы ионных кристаллов при растворении или расплавлении. Э. д., как правило, происходит в полярных р-рителях. При Э. д. разрываются обычно лишь наиб. полярные связи молекул, напр. карбоновые к-ты RCOOH диссоциируют на и Н+. Э. д. ; могут подвергаться молекулы нек-рых р-рителей, напр. воды.

59.1

Константа диссоциации вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается Kd и обратна константе ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации.

В общей реакции

где комплекс AxBy разбивается на x единиц A и y единиц B, константа диссоциации определяется так:

где [A], [B] и [AxBy] концентрации A, B и комплекса AxBy соответственно.

59.2

Закон разбавления Оствальда соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь К константа диссоциации электролита, с концентрация, λ и λ∞ значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства

где α - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Билет №60.

Сильные электролиты

  1. величина константы диссоциации сильного электролита зависит от концентрации (т.е. к растворам сильных электролитов неприменим закон действующих масс)2

  2. сильные электролиты в растворах любых концентраций полностью диссоциируют на ионы и, следовательно, закономерности, полученные для слабых электролитов, не могут применяться к сильным электролитам без соответствующих поправок.

Для сильных электролитов, полностью диссоциирующих на ионы, даже при малых концентрациях растворов энергия электростатического взаимодействия между ионами достаточно велика, и пренебречь этим взаимодействием нельзя.

. Т.о., в растворе сильного электролита возникает подобие пространственной структуры, что ограничивает свободу перемещения ионов и приводит к изменению свойств раствора в том же направлении, как действовало бы уменьшение степени диссоциации

. Чем выше концентрация раствора, тем сильнее взаимодействие ионов, тем меньше и кажущаяся степень диссоциации сильного электролита.

1.3.4. Коэффициенты активности

GA = GA0 + nRT·ln[A]

сохранялась и для реальных растворов:

GA = GA0 + nRT·ln aA.

Следовательно, активность - это та концентрация, которую имел бы компонент воображаемого идеального раствора, обладающего теми же термодинамическими свойствами, что и данный реальный раствор и имеет размерность (моль/л).

Тогда для общей реакции

aA + bB = cC + dD

K0 = aCc·aDd/aAa·aBb,

.

Отношение активности частицы к ее равновесной концентрации

gA = aA/[A]

Они зависят от ионной силы, вычисляемой по известному уравнению:

I = (1/2)·S[Aizi2,

lggi = -Azi2(I)1/2

Коэффициент активности. 2.

. Отношение активности () к общей концентрации вещества в растворе называется коэффициентом активности:

величину, которую нужно подставить в выражения для химического потенциала компонента в идеальном растворе:

(где  — химический потенциал чистого -го компонента) вместо мольной доли x, для того, чтобы получить действительное значение химического потенциала -го компонента в реальном растворе:

где  — стандартный химический потенциал.

Размерность и величина активности зависит от используемого способа выражения концентрации — если (активность при выражении концентрации как мольной доли) величина безразмерная, то и (для молярности и моляльности соответственно) — размерные величины, выражаются в моль/л и моль/кг.

Коэффициент активности в общем случае может быть как больше, так и меньше единицы (при этом говорят о положительных или отрицательных отклонениях от идеального поведения соответственно, или о положительных и отрицательных отклонениях от закона Рауля). Возможны и знакопеременные отклонения от идеального поведения (то есть коэффициент активности меньше единицы при одних концентрациях, и больше — при других). Так, например, для железа в системе Fe-S при 1300 °C в [3] рекомендуются коэффициенты активности от 0,004 при до 1,47 при .

Отметим, что величина активности и коэффициента активности может быть различной в зависимости от выбора стандартного состояния.

Ионная сила раствора

Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:

,

,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]