
- •Содержание
- •Тема 1. Общие сведения об информационных системах, теории систем 10
- •Тема 2. Модели как основа теории информационных систем 77
- •Тема 3. Описание динамики информационных систем 98
- •Тема 4. Реляционные основы проектирования информационных систем 136
- •Тема 5. Информационные модели принятия решений 191
- •Тема 6. Проблемы принятия решений в четких и нечетких информационных пространствах 246
- •Введение
- •Тема 1. Общие сведения об информационных системах, теории систем
- •1.1. Понятие системы
- •1.1.1. Основные свойства системы
- •Характеристика основных свойств системы
- •1.1.2. Дескриптивный и конструктивный подходы к определению системы
- •1.1.3. Основные категории системного подхода
- •Классификация категорий системного подхода
- •1.1.4. Основные задачи теории систем
- •Основные задачи и функции системного анализа
- •1.1.5. Логика и методология системного анализа
- •Принципы системного анализа и их характеристика
- •Характеристика основных подходов в системном анализе
- •Методы системного анализа
- •Системные теории, их авторы и характеристика
- •Контрольные вопросы
- •1.2. Понятие информации
- •1.2.1. Количественные методы оценки и характеристики информации
- •Качественные характеристики информации
- •Меры информации
- •1.2.2. Атрибутивный, логико-семантический и прагматический аспекты теории информации
- •1.2.3. Уровни представления информации
- •1.2.4. Стандарты, относящиеся к терминам и определениям понятий на уровнях представления информации
- •Контрольные вопросы
- •1.3. Понятие информационной системы
- •1.3.1. Взаимосвязь информационного процесса, информационной технологии, информационной системы
- •1.3.2. Структура информационной системы
- •1.3.3. Принципы построения информационных систем
- •1.3.4. Классификация информационных систем
- •Общая классификация систем
- •1.3.5. Уровни представления информации в информационных системах
- •Контрольные вопросы
- •Тема 2. Модели как основа теории информационных систем
- •2.1. Качественные и количественные методы описания информационных систем
- •Контрольные вопросы
- •2.2. Кибернетический подход к описанию функциональных преобразований в информационной системе
- •Контрольные вопросы
- •2.3. Метод имитационного моделирования систем
- •Контрольные вопросы
- •Тема 3. Описание динамики информационных систем
- •3.1. Информация как элемент управления
- •Этапы формирования информационного обеспечения
- •Контрольные вопросы
- •3.2. Информационные потоки
- •3.2.1. Используемые виды информационных потоков
- •3.2.2. Принципы построения информационных потоков
- •Контрольные вопросы
- •3.3. Агрегатное описание информационных систем
- •Операторы переходов агрегата
- •Частные случаи агрегата
- •Контрольные вопросы
- •3.4. Математическое и имитационное моделирование динамики сложной информационной системы
- •Преимущества моделирования динамики системы
- •Имитационное моделирование
- •Недостатки моделирования динамики системы
- •Контрольные вопросы
- •3.5. Элементы управления в информационной системе
- •Этапы разработки управления системой
- •Контрольные вопросы
- •Тема 4. Реляционные основы проектирования информационных систем
- •4.1. Концептуальное, инфологическое и физическое моделирование предметной области
- •Модели «сущность-связь» (er-модель)
- •Моделирование локальных представлений
- •Контрольные вопросы
- •4.2. Выделение информативных свойств объектов предметной области Выявление классов объектов и связей
- •Отличия между классом объектов и свойством
- •Связи между классами объектов
- •Правило чтения связи
- •Контрольные вопросы
- •4.3. Общность реляционного подхода при проектировании баз данных
- •4.3.1. Переход от er-модели к схеме реляционной базы данных
- •4.3.2. Нормализация отношений
- •4.3.3. Языки манипулирования реляционными данными
- •4.3.4. Независимость данных
- •4.3.5. Понятие логической и физической целостности данных
- •4.3.6. Способы организации данных
- •Контрольные вопросы
- •Тема 5. Информационные модели принятия решений
- •5.1. Интеллектуализация процесса анализа данных
- •5.1.1. Технология Data Mining
- •5.1.2. Olap – системы оперативной аналитической обработки данных
- •5.1.3. Системы поддержки принятия решений
- •Контрольные вопросы
- •5.2. Этапы проектирования интеллектуальных информационных систем
- •Контрольные вопросы
- •Этапы проектирования интеллектуальных информационных систем.
- •5.3. Общая постановка задачи оптимизации интеллектуальных информационных систем
- •Классификация задач оптимизации
- •Регламентированные и оптимизирующие проектные переменные системы
- •Реконфигурация структуры системы
- •Контрольные вопросы
- •Общая постановка задачи оптимизации интеллектуальных информационных систем.
- •5.4. Перспективы развития информационных систем и технологий для работы с данными в виртуальных корпоративных структурах
- •5.4.1. Основные виды виртуальных корпоративных структур
- •Виртуальный удаленный доступ
- •Виртуальное малое предприятие
- •Виртуальные команды
- •Виртуальные предприятия
- •Виртуальная корпорация
- •Виды виртуальных корпораций
- •Особенности информационного обеспечения виртуальных корпораций
- •5.4.2. Когнитивная графика, гипертекстовая технология, геоинформационные системы Когнитивная графика
- •Задачи когнитивной компьютерной графики
- •Гипертекстовая технология
- •Географические информационные системы
- •Контрольные вопросы
- •Тема 6. Проблемы принятия решений в четких и нечетких информационных пространствах
- •6.1. Основы теории принятия решений
- •Контрольные вопросы
- •6.2. Основные типы метрических пространств
- •6.2.1. Метризация информационных пространств при четкой постановке задачи. Локальные метрики
- •6.2.2. Дивизимные и агломеративные стратегии поиска альтернатив
- •6.2.3. Функции полезности. Минимаксные подходы
- •Контрольные вопросы
- •Функции полезности. Минимаксные подходы.
- •6.3. Решение задачи многоцелевой оптимизации при нечеткой постановке задачи
- •6.3.1. Нечеткие множества и отношения: основные свойства
- •Стандартные функции принадлежности
- •6.3.2. Операции над нечеткими множествами и отношениями
- •Операции над нечеткими множествами и отношениями
- •6.3.3. Формирование нечетких отношений с использованием экспертных знаний
- •6.3.4. Нечеткие и лингвистические переменные. Нечеткие системы Нечеткие и лингвистические переменные
- •Нечеткие системы
- •6.3.5. Формулировка измерительных задач как задач многоцелевой оптимизации в нечеткой среде
- •Контрольные вопросы
- •6.4. Модели представления знаний
- •Продукционные модели
- •Семантические сети
- •Формальные логические модели
- •Контрольные вопросы
- •Заключение
- •Список литературы Основная
- •Дополнительная
- •Терминологический словарь
Контрольные вопросы
-
Основные виды виртуальных корпоративных структур. Сходство и различие.
-
Особенности информационного обеспечения виртуальных корпораций.
-
Особенности гипертекстовой технологии.
-
Основные компоненты технологии World Wide Web.
-
Области применения геоинформационных систем.
Тема 6. Проблемы принятия решений в четких и нечетких информационных пространствах
6.1. Основы теории принятия решений
В научно-технической литературе существует ряд терминов, имеющих отношение к исследованию сложных систем.
Наиболее общий термин «теория систем» относится к всевозможным аспектам исследования систем. Ее основными частями являются системный анализ, который понимается как исследование проблемы принятия решения в сложной системе, и кибернетика, которая рассматривается как наука об управлении и преобразовании информации.
Понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ – совокупность процессов и процедур.
Очень близкое к термину «системный анализ» понятие – «исследование операций», которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий).
Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как постановка задач принятия решения; описание множества альтернатив; исследование многокритериальных задач; методы решения задач оптимизации; обработка экспертных оценок; работа с макромоделями системы.
Операция – всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели. Цель исследования операций – предварительное количественное обоснование оптимальных решений.
Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальным называются решения, по тем или другим признакам предпочтительные перед другими. Параметры, совокупность которых образует решение, называются элементами решения. Множество допустимых решений – заданные условия, которые фиксированы и не могут быть нарушены. Показатель эффективности (ПЭ) – количественная мера, позволяющая сравнивать разные решения по эффективности. Все решения принимаются всегда на основе информации, которой располагает лицо, принимающее решение (ЛПР). Каждая задача в своей постановке должна отражать структуру и динамику знаний ЛПР о множестве допустимых решений и о показателе эффективности.
Задача называется статической, если принятие решения происходит в наперед известном и не изменяющемся информационном состоянии. Если информационное состояние в ходе принятия решения сменяют друг друга, то задача называется динамической.
Информационные состояния ЛПР могут по-разному характеризовать его физическое состояние:
-
если информационное состояние состоит из единственного физического состояния, то задача называется определенной;
-
если информационное состояние содержит несколько физических состояний и ЛПР кроме их множества знает еще и вероятности каждого из этих физических состояний, то задача называется стохастической (частично неопределенной);
-
если информационное состояние содержит несколько физических состояний, но ЛПР кроме их множества ничего не знает о вероятности каждого из этих физических состояний, то задача называется неопределенной.
Процесс постановки задач принятия оптимальных решений включает в себя следующую последовательность действий:
-
установление границы подлежащей оптимизации системы, т.е. представление системы в виде некоторой изолированной части реального мира;
-
определение показателя эффективности, на основе которого можно оценить характеристики системы или ее проекта с тем, чтобы выявить «наилучший» проект или множество «наилучших» условий функционирования системы («наилучшему» варианту всегда соответствует экстремальное значение показателя эффективности функционирования системы);
-
выбор внутрисистемных независимых переменных, которые должны адекватно описывать допустимые проекты или условия функционирования системы и способствовать тому, чтобы все важнейшие технико-экономические решения нашли отражение в формулировке задачи;
-
построение модели, которая описывает взаимосвязи между переменными задачи и отражает влияние независимых переменных на значение показателя эффективности (в самом общем случае структура модели включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, уравнения, описывающие физические процессы, протекающие в системе, неравенства, которые определяют область допустимых значений независимых переменных и устанавливают лимиты имеющихся ресурсов).
Все задачи принятия оптимальных решений можно классифицировать следующим образом: одноцелевое принятие решений (ПЭ – скаляр); многоцелевое принятие решений (ПЭ – вектор); принятие решений в условиях определенности (исходные данные – детерминированные); принятие решений в условиях неопределенности (исходные данные – случайные).
Схема процесса принятия решения включает в себя следующие компоненты: анализ исходной ситуации; анализ возможностей выбора; выбор решения; оценка последствий решения и его корректировка.
Решение задач с учетом разного вида неопределенностей является общим случаем, а принятие решений без их учета – частным. В исследовании операций принято различать три типа неопределенностей: неопределенность целей; неопределенность наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределенность природы); неопределенность действий активного или пассивного партнера или противника. Существует достаточно большое число методов формализации постановки и принятия решений с учетом неопределенностей: принятие решений в условиях риска (критерий ожидаемого значения; комбинации ожидаемого значения и дисперсии; известного предельного уровня; наиболее вероятного события в будущем); учет неопределенных факторов, заданных законом распределения; стохастическое программирование; теория марковских процессов и метод статистического моделирования (метод Монте-Карло); учет неопределенных пассивных условий, т.е. неопределенных факторов, закон распределения которых неизвестен (критерии Вальда, Сэвиджа, Гурвица и Лапласа); учет активных условий (теория игр) и пр.