Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
инженерка.docx
Скачиваний:
28
Добавлен:
10.12.2018
Размер:
1.92 Mб
Скачать

1. Сечение поверхности цилиндра

Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:

1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);

2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);

3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).

Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.

На рисунке 105 показано пересечение поверхности цилиндра фронтально-проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.

Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.

Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3˝-9˝ является проекцией малой оси 3–9 исходного эллипса, а малая ось 0˝-6˝ представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0́-6́, который равен большой оси самого эллипса.

Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3˝ и 9˝ отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.

Развертка. На рисунке 106 показано построение развертки боковой поверхности неусеченного цилиндра. Эта боковая поверхность в развернутом состоянии является прямоугольником, основание которого равно длине окружности (πD), а высота – образующей цилиндра.

В данном случае длина окружности заменена периметром вписанного правильного 12-угольника (рис. 106), после чего через соответствующие точки делений спрямленной окружности проведены образующие. При этом на каждой образующей отмечена ее точка встречи с плоскостью Р.

Билет №29

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЯМИ ТЕЛ

Конструкции деталей можно рассматривать как сочетание различных геометрических тел. Необходимо уметь строить линии пересечения поверхностей этих тел. Пример, где требуется подобное построение, показан на рис. 195, на котором изображен бункер, ограниченный цилиндрической поверхностью А, пересекающейся с конической поверхностью Б и поверхностью пирамиды В.

В зависимости от вида поверхностей тел линии пересечения могут быть лекальными кривыми или ломаными.

Для решения задач на построение линий пересечения поверхностей необходимо предварительно усвоить построение точек пересечения прямой с поверхностями различных геометрических тел.

РИС 196

Если прямая пересекается с поверхностью тела, получаются две точки, одновременно принадлежащие как поверхности тела, так и прямой линии.

Такие точки называются точками входа и выхода (рис. 196, а; точки N и М). Для нахождения этих точек выполняются построения в следующем порядке.

Через данную прямую проводят вспомогательную плоскость (обычно проецирующую). Например, на рис. 196, а, где изображено пересечение прямой АВ с поверхностью пирамиды, через прямую проведена вспомогательная горизонтально- проецирующая плоскость Р. Затем находят линии пересечения вспомогательной плоскости с поверхностью данного геометрического тела (линии КС и ЕЮ). На пересечении полученных линий с заданной прямой находят искомые точки (точки N и М).

Билет №30

Построение линии взаимного пересечения многогранных поверхностей можно производить двумя способами, комбинируя их между собой или выбирая из них тот, который в зависимости от условий задания дает более простые построения. Эти способы следующие:

1.Определяют точки, в которых ребра одной из многогранных поверхностей пересекают грани другой и ребра второй пересекают грани первой (задача на пересечение прямой с плоскостью). Через найденные точки в определенной последовательности проводят ломаную линию, представляющую собой линию пересечения данных многогранников. При этом можно соединять прямыми проекции лишь тех точек, полученных в процессе построения, которые лежат в одной и той же грани.

2. Определяют отрезки прямых, по которым грани одной поверхности пересекают грани другой (задача на пересечение двух плоскостей между собой); эти отрезки являются звеньями ломаной линии, получаемой при пересечении  многогранных поверхностей.

Если проекция ребра одной из поверхностей не пересекает проекции грани другой, хотя бы на одной из проекций, то данное ребро не пересекает этой грани. Однако пересечение проекций ребра и грани еще не означает, что ребро и грань пересекаются в пространстве.

На примере (рис.79) показано пересечение поверхности треугольной призмы с треугольной пирамидой. Построение основано на нахождении точек пересечения ребер одного многогранника с гранями другого. На рисунке 79 б показано построение линии пересечения пирамиды АВСS и треугольной призмы DEFD*E*F*

Для нахождения точек 1 и 2 в которых ребро пирамиды AS пересекает грани DD*EE* и EE*FF* призмы, через проекцию ребра A2S2 проведена фронтально проецирующая плоскость П2, которая пересекает ребра призмы в  трех точках, горизонтальные проекции  этих точек пересечения плоскости с ребрами призмы, образуют треугольник. Проекция ребра пирамиды  A1S1 пересекает полученный треугольник в точках 11 и 21.

С помощью фронтально проецирующей плоскости β, находим точки 5 и 6  пересечения ребра пирамиды  SC с гранями призмы EE*FF* и EE*DD*, а при помощи горизонтально проецирующей плоскости  находим точки 3 и 4 пересечения ребра призмы с гранями пирамиды. Соединив полученные точки, с учетом видимости, получим пространственную ломаную линию – линию пересечения данных многогранников.

Билет №31