Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
123.docx
Скачиваний:
20
Добавлен:
08.12.2018
Размер:
54.7 Кб
Скачать

2.1 Классификация методов моделирования по типу модели

Использование моделей прямой аналогии основано на замене реального объекта моделью иной физической природы. В природе часто физически различные процессы описываются одними и теми же дифференциальными уравнениями или другого типа математическими моделями. Например, много общего имеют течение воды по трубам и ток в электрической цепи.

Методы моделирования на ЭВМ часто называют методами непрямой аналогии. Они делятся на методы моделирования на аналоговых вычислительных машинах (АВМ) и цифровых (ЦВМ).

Достоинством моделирования на АВМ является то, что процессы здесь непрерывные, такие же, как в самом объекте. Недостатки моделей на АВМ заключаются в сложности настройки и перестройки модели, в необходимости специальных мер для поддержания ее стабильности, а главное, в том, что вес и габариты модели пропорциональны ее сложности.

Указанных недостатков лишены методы моделирования на ЦВМ. Модель легко перестраивается. Реализация цифровых регуляторов также не представляет проблем. Основной недостаток цифровых моделей – необходимость реализации специальных алгоритмов численного интегрирования непрерывных процессов.

2.2 Экспериментальный и расчетно-аналитический методы проведения исследований

Эксперементальное это полунатурное и физическое моделирование.

Расчетно-аналитический метод моделирования, состоит в получении математической модели и оперировании с ней. С точки зрения исследований систем его возможности ограничены простейшими объектами. Однако формирование математической модели является неотъемлемым элементом любого метода моделирования на ЭВМ.

2.3 Полунатурный эксперимент.

При полунатурном моделировании часть системы заменяется моделью, которая стыкуется с реальным оборудованием.

Достоинство метода заключается в высокой достоверности получаемых результатов. Недостатки – в ограничениях, накладываемых реальным оборудованием, например, невозможности «сжатия» процесса моделирования во времени.

2.4 Физическое моделирование.

Физическое моделирование основано на использовании моделей той же физической природы, что и моделируемый объект, но с более удобными для экспериментирования параметрами: меньшими массой, габаритами и т. п.

Достоинство этого метода, прежде всего, в том, что физическую модель зачастую сделать гораздо проще, чем создать ее математическое описание.

Недостатки данного метода заключаются в его относительной дороговизне, сложности повторения экспериментов и сложности анализа результатов. Не всегда результаты, полученные на малой модели, легко и просто переносятся на реальный объект.

3.1 Метод математического моделирования

Математическое моделирование (ММ), совокупность методов, основанных на построении и использовании различных форм математических моделей проектируемых объектов, независимо от того, как они реализуются. В этом случае методы непрямой аналогии и расчетно-аналитический метод являются методами ММ. При ММ описание системы производится в терминах некоторой математической теории, например, теории матриц, теории дифференциальных уравнений и т. д.

ММ основано на ограниченности числа фундаментальных законов природы и принципе подобия, означающем, что явления различной физической природы могут описываться одинаковыми математическими закономерностями.

Как и всякие модели, математические модели основаны на некотором упрощении, идеализации, отбрасывании факторов, которые для данной задачи или на данном этапе исследований представляются несущественными. Например, модели объектов, используемые на начальных этапах проектирования, могут не учитывать их стохастичность, нелинейность; модели звеньев механизма могут быть получены без учета их реальной формы и т. п.

    1. Назначение и характеристики математических моделей

      Адекватность

      Проблема соответствия модели реальному объекту очень важна. Принято говорить, что модель адекватна оригиналу, если она верно отражает интересующие нас свойства оригинала и может быть использована для предсказания его поведения. При этом адекватность модели зависит от целей моделирования и принятых критериев.

Приближенность модели к действительному объекту можно рассматривать в следующих аспектах:

● с точки зрения корректности связи «вход-выход»;

● с точки зрения корректности декомпозиции модельного описания применительно к целям исследования и использования моделей.

Степень соответствия моделей в первом случае принято называть собственно адекватностью, во втором – аутентичностью. В последнем случае требуется, чтобы все подмодели и их элементы были адекватны соответствующим прототипам реального объекта.

Экономичность

Экономичность математических моделей определяется двумя основными факторами:

● затратами машинного времени на прогон модели;

● затратами оперативной памяти, необходимой для размещения модели.

Универсальность

Универсальность моделей определяет область их возможных применений. Можно строить отдельные модели для различных экспериментов или для разных режимов работы.

Устойчивость

Устойчивость модели – это ее способность сохранять адекватность при исследовании системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы.

В общем случае можно утверждать, что чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель.

Чувствительность

Очевидно, что устойчивость является положительным свойством модели. Однако если изменение входных воздействий или параметров модели (в некотором заданном диапазоне) не отражается на значениях выходных переменных, то польза от такой модели невелика. В связи с этим возникает задача оценивания чувствительности модели к изменениям параметров рабочей нагрузки и внутренних параметров самой системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]