Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ИМОС.docx
Скачиваний:
8
Добавлен:
06.12.2018
Размер:
3.02 Mб
Скачать

Артур Корн

В результате этого в 1902 г. А. Корн продемонстрировал свое устройство в лабораторных условиях, в 1904 г. смог передать фотографическое изображение из Мюнхена в Нюрнберг. В том же году он поделился своим изобретением в печати, после чего началось его практическое использование. И в 1911 г. появился первый справочник по фототелеграфии.

2.От Артура Корна до Бориса Розинга

К тому времени, когда появился фототелеграф, русский ученый К. Д. Перский подвел итоги проделанной работы по созданию механизма передачи движущего изображения на расстояние и ввел в употребление термин «телевидение».

И хотя изобретение фототелеграфа стало важным шагом на пути создания телевидения, до его создания было еще далеко. Если возможность преобразования световых колебаний в электрические к началу была доказана, то возможность преобразования электрических колебаний в световые и передача с их помощью изображений оставалась гипотезой.

Как уже отмечалось, Д. Кери предложил использоваться для этой цели электрические лампы. В одном из его проектов речь шла о 2500 лампах. Именно такое количество разных по яркости точек он предполагал вывести на экран.

Между тем первоначально добиться этого не удавалось. Дело в том, что и в проекте Д. Кери, и в проекте А. де Пайвы речь шла о лампах накаливания, которые имеют один очень важный недостаток – «инерционность источника света, не поспевающего изменять свою яркость за изменениями сигнала».

Одним из первых, кто понял это, был русский ученый П.И. Бахметьев. Поэтому в 1880 г. он предложил использовать для преобразования электрических сигналов в световые газовые горелки.

Но и это предложение не решало проблемы. В связи с этим было обращено внимание на эффект электрической дуги. Электрическая дуга - это «продолжительный электрический разряд между электродами, при котором развивается высокая температура и излучается яркий свет».

Подобное явление открыл русский физик Василий Владимирович Петров (1761-1834). Результаты своих наблюдений он изложил в книге «Известие о гальвани-вольтовских опытах, которые производил профессор физики Василий Петров, посредством огромной наипаче батареи, состоявшей иногда из 4200 медных и цинковых кружков и находящейся при Санкт-Петербургской медико-хирургической академии», которая была издана в 1802 г.

Используя графитные электроды, французский изобретатель Фуко создал в 1844 г. дуговую лампу. От лампы накаливания она отличается тем, что в ней электрический разряд возникает и исчезает почти мгновенно. Кроме того, меняя напряжение в сети можно изменять яркость свечения электрического разряда.

Однако первые дуговые лампы была очень несовершенны. Все упиралось в три проблемы: а) как избежать того, чтобы под действием высокой температуры не оплавлялись концы электродов, б) как изолировать обнаженные концы электродов, по которым идет ток, в) как сделать осветительный прибор безопасным с пожарной точки зрения. Решение этих трех задач привело к созданию дуговой газоразрядной лампы, которую некоторые называют «лампой Гейслера».

Можно встретить мнение, что первым, кто решил использовать дуговую лампу для передачи изображения на расстояние, был П. Нипков, в проекте которого якобы фигурировала неоновая лампа. Однако неоновая лампа появилась после того, как в 1909 г. американский ученый Ирвинг Ленгмюр предложил для продления срока действия электрических ламп наполнять их инертным газом, а в 1910 г. французский инженер Жорж Клод (1870-1960) использовал для этого неон. Что же касается П. Нипкова, то в его патенте фигурирует просто «источник света»

Поэтому пальма первенства в этом вопросе, по всей видимости, принадлежит американскому изобретателю Уильяму Сойеру (1880).

К тому времени газоразрядная лампа Г. Гейслера претерпела значительные изменения. Исследователями было обращено внимание: «когда газ становится достаточно разряженным, стеклянные стенки, расположенные на конце, противоположном катоду (отрицательному электроду), начинают флуоресцировать зеленоватым светом, что, по всей видимости, происходило под воздействием излучения, возникающего на катоде».

Иначе говоря, действие лампы Г. Гейслера сопровождалось эффектом люминесценции. Люминесценция – это свечение тела (или вещества), происходящее под влиянием внешнего излучения, электрического разряда, химического процесса или других факторов.

Занимаясь изучением газовых разрядов и используя лампы, изготовленные для него Г. Гейслером, боннский математик Ю. Плюккер (1801-1868) в 1858 г. установил, что при электрическом разряде вблизи катода возникает излучение, названное им катодным.

Катод – электрод источника электрического тока с отрицательным полюсом, а «катодоиллюминсценция – вид люминесценции, в котором свечение люминофоров происходит под действием падающего на них потока электронов».

Продолжая эти исследования, английский физик Уильям Крукс (1832-1919) обнаружил в 1879 г., что под влиянием катодных лучей некоторые кристаллы, например, алмаз, рубин, тоже начинают люминисцировать, причем разным цветом.

Для поиска способов преобразования электрических колебаний в цепи в световые сигналы большое значение имело еще одно открытие

В 1869 г. немецкий физик И. В, Гитторф (1824-1914) установил, что катодные лучи могут отклоняться под влиянием магнитного поля.