
- •Узбекское агентство почты и телекоммуникации Ташкентский электротехнический институт связи
- •Ташкент 2002
- •Введение
- •Лекция 1. Основные элементы, понятия и законы электрических цепей
- •Определение электрических цепей. Понятие тока, напряжения и эдс
- •Элементы электрических цепей и их свойства
- •Пассивные элементы
- •А dq ктивные элементы
- •Схемы замещения реальных элементов эц
- •Электрическая схема и ее элементы
- •Виды соединений элементов эц
- •Законы Кирхгофа
- •Закон Ома
- •Вопросы для самоконтроля к лекции 1
- •Лекция 2. Методы расчета цепей постоянного тока
- •2.1. Определение и порядок расчета цепей постоянного тока
- •Порядок расчета лэц при воздействии постоянной эдс
- •2.2. Расчет резистивных лэц
- •2.3. Метод контурных токов
- •Правила составления уравнений по мкт
- •Порядок расчета по мкт
- •2.4. Метод узловых напряжений
- •Правила составления уравнений по мун
- •Порядок расчета по мун
- •2.5. Вопросы для самоконтроля к лекции 2
- •Лекция 3. Лэц при гармоническом воздействии
- •3.1. Гармонические колебания и их описание
- •3.2. Действующее значение периодической функции
- •3.3. Представление гармонических колебаний векторами
- •3.4. Связь между мгновенными значениями напряжения и тока на элементах цепи
- •1. Активное сопротивление
- •2. Индуктивность
- •3.Емкость
- •3.5. Последовательное соединение элементов r, l, c
- •3.6. Вопросы для самоконтроля к лекции 3
- •Лекция 4. Символический метод расчета цепей гармонического тока
- •4.1. Символическое изображение синусоидальных функций комплексными величинами
- •4.2. Изображение производной и интеграла от синусоидальной функции
- •4.3. Комплексные сопротивления и проводимость
- •4.4. Законы Ома и Кирхгофа в комплексной форме
- •4.5. Выражение мощности в комплексной форме. Баланс мощностей
- •4.6. Условие передачи максимальной мощности от источника в нагрузку
- •4.7. Вопросы для самоконтроля к лекции 4
- •Лекция 5. Простейшие частотно-избирательные цепи
- •5.1. Комплексная передаточная функция
- •5.2. Явление резонанса и его значение в радиотехнике и электросвязи
- •5.3. Последовательный колебательный контур.
- •5.4. Виды расстроек контура
- •5.5. Частотные характеристики последовательного колебательного контура
- •5.6. Полоса пропускания
- •5.7. Вопросы для самоконтроля к лекции 5
- •Литература: [1] с. 148-170; [2] с. 54-62; [3] с. 122-131; [4] с. 126-128; [5] с. 191-205; 211-226. Лекция 6. ПереходнЫе процессы в лэц
- •6.1. Понятие о переходном процессе
- •6.2. Законы коммутации
- •6.3. Классический метод расчёта переходных процессов
- •Например, переходной процесс в цепи, состоящей из последовательно соединённых r,l,с элементов при включении в неё источника эдс е(t) описывается уравнением:
- •6.4. Способы составления характеристического уравнения
- •6.5. Порядок расчёта переходных процессов классическим методом
- •6.6. Включение цепи rl на постоянное напряжение
- •Мерой длительности переходного процесса является постоянная времени .
- •6.7. Включение цепи rc на постоянное напряжение
- •6.8. Вопросы для самоконтроля к лекции 6
- •Литература: [1] с. 185-198; [2] с. 103-112; [3] с. 199-209; [5] с. 344-363. Лекция 7. Операторный метод расчёта переходных процессов
- •7.1. Преобразования Лапласа
- •7.2. Некоторые свойства преобразования Лапласа
- •7.3. Законы Ома и Кирхгофа в операторной форме Благодаря линейности преобразования Лапласа, законы Ома и Кирхгофа можно написать для изображений токов и напряжений
- •7.4. Определение оригинала функции по его изображению
- •7.5. Порядок расчёта переходных процессов операторным методом
- •7.6. Операторная передаточная функция
- •7.7. Вопросы для самоконтроля к лекции 7
- •Литература: [1] с. 218-248; [2] с. 121-127; [3] с. 219-237; [4] с. 251-257; [5] с. 381-391. Лекция 8. Анализ лэц при импульсных воздействиях
- •8.1. Единичная и импульсная функции
- •8.2. Переходная и импульсная характеристики
- •8.3. Временной метод анализа лэц
- •8.4. Частотный метод анализа лэц
- •8.5. Вопросы для самоконтроля к лекции 8
- •Литература: [1] с. 254-302; [3] с. 238-241, 245-277; [4] с. 257-258, 215-219, 274-277; [5] с. 391-397.
- •9.1. Назначение и классификация электрических фильтров
- •9.2. Рабочие характеристики электрических фильтров
- •. Полиномиальные фильтры
- •Передаточная функция фч определяется выражением
- •. Расчёт полиномиальных фильтров
- •9.5. Табличный метод расчёта фильтров
- •9.6. Вопросы для самоконтроля к лекции 9
- •Литература
- •Содержание
- •7.7. Вопросы для самоконтроля к лекции 7 ………………………………….… 65
- •8.5. Вопросы для самоконтроля к лекции 8 ……………………………………. 73
- •9.5. Вопросы для самоконтроля к лекции 9 ……………………………………. 80
3.3. Представление гармонических колебаний векторами
Для непосредственного сложения синусоидальных функций необходимо производить достаточно громоздкие операции. Существенное упрощение достигается, если синусоидальную функцию изобразить в виде вращающегося вектора.
Векторное изображение синусоиды строится следующим образом (см. рис. 3.2).
Рис. 3.2.
На
плоскости из начала координат под углом
,
равному начальной фазе синусоиды,
проводится прямая и на ней откладывается
в масштабе отрезок, равный амплитуде
колебания. Угол
откладывается против часовой стрелки
от горизонтальной оси, если
;
и по часовой стрелке, если
.
Если угол
откладывать от горизонтальной оси, то
проекция вектора на вертикальную ось
равна (в выбранном масштабе) мгновенному
значению синусоидальной функции.
Построим векторное изображение суммы двух функций (рис. 3.3):
(3.5)
Очевидно, что вместо сложения синусоид удобно геометрически складывать их векторные изображения. Таким образом, получили простейшую векторную диаграмму.
Рис. 3.3.
Векторная диаграмма представляет собой совокупность векторов, изображающих синусоидальные функции одинаковой частоты, построенных с соблюдением масштаба и правильной ориентации их друг относительно друга по фазе.
Условились: вместо амплитуд на векторных диаграммах откладывать действующее значение функции.
3.4. Связь между мгновенными значениями напряжения и тока на элементах цепи
1. Активное сопротивление
По закону Ома имеем:
u
Временная и векторная диаграммы представлены на рис. 3.4.
Рис. 3.4.
Углом
сдвига фаз межу током и напряжением
называется разность начальных фаз
напряжения и тока
.
Выводы:
-
напряжение на участке с активным сопротивлением при синусоидальном токе будет также синусоидальным, при этом напряжение и ток совпадают по фазе, амплитуда напряжения равна
;
-
закон Ома для участка с активным сопротивлением одинаково справедлив и для мгновенных значений, и для амплитуд, и для действующих значений.
Мгновенная
мощность PR
= uRi
содержит две составляющие: постоянную
и переменную, которая изменяется по
закону косинуса с частотой
(3.8)
Среднее за период значение мгновенной мощности (называется активной мощностью) равно:
(3.9)
2. Индуктивность
Напряжение на индуктивности определяется по закону электромагнитной индукции
(3.10)
Обозначим
,
тогда ULm
= ImXL
или uL
= IXL
Выводы:
-
если ток на индуктивности изменяется по синусоидальному закону, то и напряжение также изменяется синусоидальному закону, однако начальные фазы этих синусоид не совпадают – они сдвинуты на
(рис. 3.5), кривая напряжения опережает кривую тока на
, т.е.
;
-
если величину
называть индуктивным сопротивлением, то амплитуда напряжения на индуктивности будет равна произведению амплитуды тока и индуктивного сопротивления. Следовательно, получается формула, аналогичная закону Ома. Точно также связаны действующие значения напряжения и тока. Мгновенные значения закону Ома не подчиняются.
а) временные диаграммы б)векторная диаграмма
Рис. 3.5.
Мгновенная
мощность
будет равна
.
Средняя
(активная) мощность на участке с
индуктивностью равна нулю, но энергия
на этом участке пульсирует. Когда ток
возрастает от нуля до максимума по
абсолютной величине, мощность
(положительна),
энергия поступает от источника в
индуктивность и там накапливается в
виде энергии магнитного поля
Wm
= Li2/2.
Когда ток уменьшается от max
до 0 , энергия переходит из магнитного
поля обратно в источник, мощность
.